Skip to main content
Log in

Asymptotic behavior of the local times of a two-parameter random walk with finite variance

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

In the paper one considers the asymptotic behavior for n→∞ of the number ϕ(m,n,j) of visits of a recurrent random walk\(v_{\ell \kappa } = \mathop \Sigma \limits_{i = 1}^\ell \mathop \Sigma \limits_{j = 1}^k \xi ij\), where {ξij} i,j=1 are independent, identically distributed, integer-valued random variables,Eξ11=0,Eξ 211 =D<∞, at the point j up to the moment (m,n)m=m(n) Let\(\hat t_n \left( {s, t, x} \right) = \left( {mn} \right)^{{\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}} \varphi \left( {\left[ {ms} \right], \left[ {nt} \right], \left[ {x\sqrt {mn} } \right]} \right)\) and let\(\hat t\left( {s, t, x} \right)\) be the local time of the Brownian sheet W(s,t), EW (S,t)=Dst. One proves the weak convergence of the processes\(\hat t\left( {s, t, x} \right)\) to the process\(\hat t\left( {s, t, x} \right), \left( {s, t, x} \right) \in \left[ 0 \right., \left. \infty \right)^2 x R^1 \) and this result is applied to the investigation of the limiting behavior of the functionals

$$\eta _n \left( {s, t} \right) = \sum\limits_{\ell = 1}^{\left[ {ms} \right]} {} \sum\limits_{\kappa = 1}^{\left[ {nt} \right]} {\sigma _n \left( {\ell , \kappa } \right)f_n \left( {v_{\ell \kappa } } \right)} ,\left( {s, t} \right) \in \left[ {0, T} \right]^2 ,$$

where σn(ℓ, κ) and fn(v ℓκ) are certain sequences of nonrandom functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. P. J. Bickel and M. J. Wichura, “Convergence criteria for multiparameter stochastic processes and some applications,” Ann. Math. Statist.,42, No. 5, 1656–1670 (1971).

    Google Scholar 

  2. A. N. Borodin, “Limit theorems for local times of recurrent random walks with infinite variance,” in: Proc. Third Int. Vilnius Conf. on Probability Theory and Mathematical Statistics, Vol. 1, Vilnius (1981), pp. 75–76.

    Google Scholar 

  3. J. B. Walsh, “The local time of the Brownian sheet,” Astérisque,52–53, 47–61 (1978).

    Google Scholar 

  4. Yu. A. Davydov, “Local times for multiparameter random processes,” Teor. Veroyatn. Primen.,23, No. 3, 594–605 (1978).

    Google Scholar 

  5. A. N. Borodin, “The asymptotic behavior of local times of recurrent random walks with finite variance,” Teor. Veroyatn. Primen.,26, No. 4, 769–783 (1981).

    Google Scholar 

  6. A. N. Borodin, “Limit theorems for additive functionals of recurrent random walks,” in: Proc. XV All-Union School-Colloquium on Probability Theory and Mathematical Statistics, Vol. 1, Tbilisi (1981). pp. 21–23

    Google Scholar 

  7. P. Billingsley, Convergence of Probability Measures, Wiley, New York (1968).

    Google Scholar 

  8. J. L. Doob, Stochastic Process, Wiley, New York (1953).

    Google Scholar 

  9. A. V. Skorokhod, Studies in the Theory of Random Processes, Addison-Wesely, Reading (1965).

    Google Scholar 

  10. R. K. Getoor, “Another limit theorem for local time,” Z. Wahrsch. Verw. Gebiete,34, No. 1, 1–10 (1976).

    Google Scholar 

  11. F. Spitzer, “Some properties of recurrent random walk,” Illinois J. Math.,5, No. 2, 234–245 (1961).

    Google Scholar 

  12. A. N. Borodin, “The distribution of integral functionals of a Brownian motion process,” J. Sov. Math., 27, No. 5 (1984).

    Google Scholar 

Download references

Authors

Additional information

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 130, pp. 36–55, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borodin, A.N. Asymptotic behavior of the local times of a two-parameter random walk with finite variance. J Math Sci 27, 3190–3203 (1984). https://doi.org/10.1007/BF01850665

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01850665

Keywords

Navigation