Periodica Mathematica Hungarica

, Volume 20, Issue 1, pp 65–74 | Cite as

The dual of a finitely generated multiplication module

  • A. G. Naoum
  • B. Al-Hashimi
  • K. R. Sharaf
Article

Mathematics subject classification number

1980/85 Primary 13F05 Secondary 13B20 

Key words and phrases

Projective module multiplication module the dual of a module 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Barnard, Multiplication modules,J. Algebra 71 (1981), 174–178.MR 82k: 13008Google Scholar
  2. [2]
    S. MacLane,Homology, Springer, Berlin, 1967.MR 28: 122;50: 2285Google Scholar
  3. [3]
    A. G. Naoum, On finitely generated projective ideals in commutative rings,Period. Math. Hungar. 12 (1981), 287–292.MR 83i: 13008Google Scholar
  4. [4]
    A. G. Naoum andM. M. Balboul, On finitely generated multiplication ideals in commutative rings,Beiträge zur Algebra und Geometrie 19 (1985), 75–82.MR 86i: 13002Google Scholar
  5. [5]
    A. G. Naoum andM. A. K. Hasan, On finitely generated projective ideals and Ohm condition,Period. Math. Hungar. 16 (1985), 51–60.MR 86f: 13003Google Scholar
  6. [6]
    A. G. Naoum andM. A. K. Hasan, The residual of finitely generated multiplication modules,Arch. Math. (Basel)46 (1986), 225–230.Zbl 573: 13001;579: 13002.Google Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • A. G. Naoum
    • 1
  • B. Al-Hashimi
    • 1
  • K. R. Sharaf
    • 1
  1. 1.Department of Mathematics College of ScienceUniversity of BaghdadBaghdadIraq

Personalised recommendations