Periodica Mathematica Hungarica

, Volume 14, Issue 3–4, pp 259–267 | Cite as

Sine sequence of second order linear recurrences

  • S. H. Molnár

AMS (MOS) subject classifications (1980)

Primary 10A35 Secondary 10F40, 10K05 

Key words and phrases

Second order linear recurrence fractional part convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. W. S. Cassels,An introduction to diophantine approximation, Cambridge Univ. Press, 1957.MR 19—396Google Scholar
  2. [2]
    W. Gerdes, Convergent generalized Fibonacci sequences,Fibonacci Quart. 15 (1977), 156–160.MR 56 # 237Google Scholar
  3. [3]
    W. Gerdes, Generalized tribonacci numbers and their convergent sequences,Fibonacci Quart. 16 (1978), 269–275.MR 80a: 10019Google Scholar
  4. [4]
    M. B. Gregory andJ. M. Metzger, Fibonacci sine sequences,Fibonacci Quart. 16 (1978). 119–120.MR 58 # 16588Google Scholar
  5. [5]
    P. Kiss, A diophantine approximative property of the second order linear recurrences,Period. Math. Hungar. 11 (1980), 281–287.MR 82k: 10034Google Scholar
  6. [6]
    F. Mátyás, Másodrendű lineáris rekurzív sorozatok elemeinek hányadosairól (On the quotients of the elements of linear recursive sequences of second order),Mat. Lapok 27 (1976/79), 379–389. (In Hungarian)MR 82m: 10020Google Scholar
  7. [7]
    I. Niven andH. S. Zuckerman,An introduction to the theory of numbers, Wiley, New York, 1960.MR 22 # 5605Google Scholar

Copyright information

© Akadémiai Kiadó 1983

Authors and Affiliations

  • S. H. Molnár
    • 1
  1. 1.Ho Si Minh Tanárképző FőiskolaMatematikai TanszékEgerHungary

Personalised recommendations