Advertisement

Periodica Mathematica Hungarica

, Volume 14, Issue 3–4, pp 235–243 | Cite as

Error bounds for the rate of convergence of averaging-Hermite—Fejér and averaging-Egerváry—Turán interpolators

  • R. B. Saxena
  • N. Misra
Article
  • 18 Downloads

AMS (MOS) subject classification (1980)

Primary 41A05 

Key words and phrases

Approximations and expansions rate of convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. L. Berman, Issledovanie interpoljacionnogo processa Èrmita—Feiera (A study of the process of the Hermite—Fejér interpolation),Dokl. Akad. Nauk SSSR 187 (1969), 241–244.MR 40 # 3127Google Scholar
  2. [1a]
    D. L. Berman, A study of the process of the Hermite—Fejér interpolation,Soviet Math. Dokl. 10 (1969), 813–816.Google Scholar
  3. [2]
    D. L. Berman, Ob odnom vsjudu rashodjaščemsja interpoljacionnom processe Èrmita—Feiera (On an everywhere divergent Hermite—Fejér interpolation process),Izv. Vysš. Učebn. Zaved. Matematika 1970/1, 3–8.MR 41 # 7343Google Scholar
  4. [3]
    R. Bojanic, J. Prasad andR. B. Saxena, An upper bound for the rate of convergence of Hermite—Fejér process on the extended Chebyshev nodes of second kind,J. Approx. Theory 26 (1979), 195–203.MR 81c: 41032Google Scholar
  5. [4]
    M. A. Botto andA. Sharma, Averaging interpolation of sets with multiplicities,Aequationes Math. 15 (1977), 63–72.MR 56 # 3501Google Scholar
  6. [5]
    E. Egerváry andP. Turán, Notes on interpolation, V (On stability of interpolation),Acta Math. Acad. Sci. Hungar. 9 (1958), 259–267.MR 21 # 2136Google Scholar
  7. [6]
    T. S. Motzkin andA. Sharma, Next-to-interpolatory approximation on sets with multiplicities,Canad J. Math. 18 (1966), 1196–1211.MR 34 # 3174Google Scholar
  8. [7]
    T. S. Motzkin, A. Sharma andE. G. Straus, Averaging interpolation,Spline functions and approximation theory (Proc. Symp., Edmonton, 1972), Birkhäuser, Basel, 1973; 191–233.MR 51 # 13521Google Scholar
  9. [8]
    L. P. Povčun andA. A. Privalov, Ob odnom interpoljacionnom processe E. Egervari i P. Turana (On an interpolation process of E. Egerváry and P. Turán),Izv. Vysš. Učebn. Zaved. Matematika 1974/8, 82–88.MR 50 # 7892Google Scholar
  10. [9]
    R. B. Saxena, Averaging interpolation of Hermite—Fejér type,Canad. Math. Bull. 19 (1976), 315–321.MR 55 # 10911Google Scholar
  11. [10]
    R. B. Saxena andK. K. Mathur, The rapidity of convergence of quasi-Hermite—Fejér interpolation polynomials,Acta Math. Acad. Sci. Hungar. 28 (1976), 343–347.MR 54 # 10930Google Scholar
  12. [11]
    R. B. Saxena andA. Sharma, Convergence of averaging interpolation operators,Demonstratio Math. 6 (1973), 821–839.MR 51 # 1203Google Scholar

Copyright information

© Akadémiai Kiadó 1983

Authors and Affiliations

  • R. B. Saxena
    • 1
  • N. Misra
    • 1
  1. 1.Department of Mathematics and AstronomyLucknow UniversityLucknowIndia

Personalised recommendations