Advertisement

Periodica Mathematica Hungarica

, Volume 14, Issue 3–4, pp 229–234 | Cite as

On integralEP r matrices

  • Ar. Meenakshi
Article
  • 18 Downloads

Abstract

This paper gives a characterization of integralEP r matrices and necessary and sufficient conditions for the generalized inverse of the product of two integralEP r matrices to be integral andEP r .

AMS (MOS) subject classifications (1980)

Primary 15A36 Secondary 15A09, 15A57 

Key words and phrases

Integral matrices EPr matrix generalized inverse of a matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Batigne, Integral generalized inverses of integral matrices.Linear Algebra and Appl. 22 (1978), 125–134.MR 80c: 15001Google Scholar
  2. [2]
    D. Batigne, F. J. Hall andI. J. Katz, Further results on integral generalized inverses of integral matrices,Linear and Multinear Algebra 6 (1978), 233–241.MR 80d: 15020Google Scholar
  3. [3]
    F. J. Hall andI. J. Katz, On ranks of integral generalized inverses of integral matrices,Linear and Multilinear Algebra 7 (1979), 73–85.Google Scholar
  4. [4]
    F. J. Hall andI. J. Katz, More on integral generalized inverses of integral matrices,Linear and Multilinear Algebra 9 (1980), 201–209.MR 83e: 15018Google Scholar
  5. [5]
    I. J. Katz, Theorems on products ofEP r matrices, II,Linear Algebra and Appl. 10 (1975), 37–40.MR 51 # 8134Google Scholar
  6. [6]
    Ar. Meenakshi, OnEP r matrices with entries from an arbitrary field,Linear and Multilinear Algebra 9 (1980), 159–164.MR 81k: 1024Google Scholar
  7. [7]
    R. Penrose, A generalized inverse for matrices,Proc. Cambridge Philos. Soc. 51 (1955), 406–413.MR 16—1082Google Scholar
  8. [8]
    H. Schwerdtfeger,Introduction to linear algebra and the theory of matrices, second edition, Noordhoff, Groningen, 1962.MR 12—470;RŽ (Mat) 1964, 2A211Google Scholar

Copyright information

© Akadémiai Kiadó 1983

Authors and Affiliations

  • Ar. Meenakshi
    • 1
  1. 1.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations