Periodica Mathematica Hungarica

, Volume 20, Issue 4, pp 261–278 | Cite as

Infinite strings with discrete spectrum

  • M. Horváth

Mathematics subject classification number, 1980/85

Primary 93099 

Key words and phrases

Vibrating strings approximate controllability Riesz basis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. A. Avdonin, K voprosu o bazisah Rissa iz pokazatel'nyh funkciñ vL 2 (On the question of Riesz bases of exponentials inL 2),Vestnik Leningrad. Univ. Mat. Meh. Astronom. 1974/13, 5–12.Zbl 296: 46033Google Scholar
  2. [2]
    S. A. Avdonin, O rešenii pokazatel'noi problemy momentov v prostranstveL 2(0, ∞) (On the solution of the exponential moment problem in the spaceL 2(0, ∞)),Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 73 (1977), 193–194.Zbl 409: 42007Google Scholar
  3. [3]
    S. A. Avdonin, Ob upravljaemosti sistem s raspredelennymi parametrami (On controllability of systems with distributed parameters),Vestnik Leningrad. Univ. Mat. Meh. Astronom. 1980/19, 5–8.MR 82c: 93003Google Scholar
  4. [4]
    S. A. Avdonin andI. Joó, Riesz bases of exponentials and sine-type functions,Acta Math. Hungar. 51 (1988), 3–14.Zbl 645: 42027Google Scholar
  5. [5]
    A. Bogmér, On control problems,Period. Math. Hungar. 20 (1989), 13–25.Google Scholar
  6. [6]
    A. Bogmér, A string equation with special boundary conditions,Acta Math. Hungar. 53 (1989), 367–376.Google Scholar
  7. [7]
    A. Bogmér, M. Horváth andI. Joó, On the control of strings,A. Haar Memorial Conference (Colloq. Math. Soc. Bolyai, 49), North-Holland, Amsterdam, 1987.Google Scholar
  8. [8]
    M. Horváth, Vibrating strings with free ends,Acta Math. Hungar. 51 (1988), 171–180.Google Scholar
  9. [9]
    I. Joó, On the reachability set of a string,Acta Math. Hungar. 49 (1987), 203–211.Google Scholar
  10. [10]
    I. Joó, On the vibration of a string,Studia Sci. Math. Hungar. 22 (1987), 1–9.Google Scholar
  11. [11]
    M. A. Naimark,Lineinye differencial'nye operatory (Linear differential operators), second edition, Nauka, Moskva, 1969.MR 50: 5547Google Scholar
  12. [12]
    N. K. Nikol'skii,Lekcii ob operatore sdviga (Lectures on the shift operator), Nauka, Moskva, 1980.MR 82i: 47013Google Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • M. Horváth
    • 1
  1. 1.Eötvös Loránd TudományegyetemAnalízis TanszékBudapestHungary

Personalised recommendations