Advertisement

Periodica Mathematica Hungarica

, Volume 13, Issue 2, pp 79–96 | Cite as

Triangularization methods in the transformation theory of planar dynamical systems, III: Second-order equations, application

  • G. Tóth
Article
  • 26 Downloads

AMS (MOS) subject classifications (1970)

Primary 34C20 Secondary 34C35 

Key words and phrases

Planar dynamical system graph representation triangularization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Bellman,Stability theory of differential equations, McGraw-Hill, New York, 1953.MR 15—794Google Scholar
  2. [2]
    E. A. Coddington andN. Levinson,Theory of ordinary differential equations, McGraw-Hill, New York, 1955.MR 16—1022Google Scholar
  3. [3]
    S. Lefschetz,Differential equations: Geometric theory, Wiley, New York, 1963.MR 27 # 3864Google Scholar
  4. [4]
    V. V. Nemyckii andV. V. Stepanov,Kačestvennaja teorija differencial'nyh uravnenii (Qualitative theory of differential equations), OGIZ, Moscow, 1947.MR 10—612Google Scholar
  5. [5]
    L. S. Pontrjagin,Obyknovennye differencial'nye uravnenija (Ordinary differential equations), Nauka, Moscow, 1970.MR 31 # 3650,43 # 3521Google Scholar
  6. [6]
    V. S. Samovol, O privedenii dinamičeskih sistem k treugol'nomu vidu (On the reduction of dynamical systems into triangular form),Differencial'nye Uravnenija 5 (1969), 1076–1082.MR 40 # 488Google Scholar
  7. [7]
    R. A. Struble,Nonlinear differential equations, McGraw-Hill, New York, 1962.MR 24 # A269Google Scholar
  8. [8]
    G. Tóth, On the triangularizability of planar orthogonal differential equations,Period. Math. Hungar. 8 (1977), 243–251.MR 57 # 790Google Scholar
  9. [9]
    G. Tóth, On the global triangularizability of planar differentiable dynamical systems,Studia Sci. Math. Hungar. 11 (1976), 211–228.MR 81a: 34042Google Scholar
  10. [10]
    G. Tóth, On the triangularizability of planar differential systems without critical points,Studia Sci. Math. Hungar. 12 (1977), 425–428.Zbl 457. 34034Google Scholar
  11. [11]
    G. Tóth, Triangularization methods in the transformation theory of planar dynamical systems, I: Graph representation of totally regular dynamical systems,Period. Math. Hungar. 11 (1980), 197–211.Zbl 419. 34037Google Scholar
  12. [12]
    G. Tóth, Triangularization methods in the transformation theory of planar dynamical systems, II: Classification of triangularizable dynamical systems,Period. Math. Hungar. 11 (1980), 289–308.Google Scholar

Copyright information

© Akadémiai Kiadó 1982

Authors and Affiliations

  • G. Tóth
    • 1
  1. 1.MTA Matematikai Kutató IntézetBudapestHungary

Personalised recommendations