Advertisement

Periodica Mathematica Hungarica

, Volume 18, Issue 4, pp 259–269 | Cite as

Generation of alternating groups by pairs of conjugates

  • L. B. Beasley
  • J. L. Brenner
  • P. Erdős
  • M. Szalay
  • A. G. Williamson
Article
  • 29 Downloads

Abstract

Considering the conjugacy classes of the alternating group of degreen, those classes that contain a pair of generators are in the majority. In fact, the proportion of such classes is 1 −ε(n), andε(n) → 0 asn → ∞.

AMS (MOS) subject classifications (1980)

Primary 20P05 Secondary 20F05, 20D06, 20D60 

Key words and phrases

Alternating groups pairs of generators in almost all conjugacy classes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. E. Andrews,The theory of partitions, Addison—Wesley, Reading, 1976.MR 58: 27738Google Scholar
  2. [2]
    J. D. Bovey andA. Williamson, The probability of generating the symmetric group,Bull. London Math. Soc. 10 (1978), 91–96.MR 58: 5568Google Scholar
  3. [3]
    J. D. Bovey, The probability that some power of a permutation has small degree,Bull. London Math. Soc. 12 (1980), 47–51.MR 81i: 10067Google Scholar
  4. [4]
    H. R. Brahana, Pairs of generators of the known simple groups whose orders are less than one million,Annals of Math. (2) 31 (1930), 529–549.Google Scholar
  5. [5]
    P. J. Cameron, P. M. Neumann andD. N. Teague, On the degrees of primitive permutation groups,Math. Z. 180 (1982), 141–149.MR 83i: 20004Google Scholar
  6. [6]
    M. D. E. Conder, More on generators for alternating and symmetric groups,Quart. J. Math. Oxford Ser. 32 (1981), 137–163.MR 82e: 20001Google Scholar
  7. [7]
    J. Dénes, P. Erdős andP. Turán, On some statistical properties of the alternating group of degreen, L'Enseignement Math. 15 (1969), 88–99.MR 40: 214Google Scholar
  8. [8]
    J. D. Dixon, The probability of generating the symmetric group,Math. Z. 110 (1969), 199–205.MR 40: 4985Google Scholar
  9. [9]
    P. Erdős andJ. Lehner, The distribution of the number of summands in the partitions of a positive integer,Duke Math. J. 8 (1941), 335–345.MR 3, 69Google Scholar
  10. [10]
    P. Erdős andP. Turán, On some problems of a statistical group theory, I,Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965), 175–186.MR 32: 2465Google Scholar
  11. [11]
    P. Erdős andP. Turán, On some problems of a statistical group theory, V,Period. Math. Hungar. 1 (1971), 5–13.MR 44: 6638Google Scholar
  12. [12]
    V. L. Gončarov, Iz oblasti kombinatoriki (On the field of combinatorial analysis),Izv. Akad. Nauk SSSR Ser. Mat. 8 (1944), 3–48.MR 6, 88Google Scholar
  13. [12a]
    V. L. Gončarov, On the field of combinatorial analysis,Translations Amer. Math. Soc. Ser. 219 (1962), 1–46.Google Scholar
  14. [13]
    G. A. Miller, On the group generated by two operators,Bull. Amer. Math. Soc. 7 (1901), 424–426.Google Scholar
  15. [14]
    M. Szalay andP. Turán, On some problems of the statistical theory of partitions with application to characters of the symmetric group, III,Acta Math. Acad. Sci. Hungar. 32 (1978), 129–155.MR 81i: 10063Google Scholar
  16. [15]
    H. Wielandt,Finite permutation groups, Academic Press, New York, 1964.MR 32: 1252Google Scholar
  17. [16]
    A. Williamson, On primitive permutation groups containing a cycle,Math. Z. 130 (1973), 159–162.MR 47: 6819Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • L. B. Beasley
    • 1
  • J. L. Brenner
    • 2
  • P. Erdős
    • 3
  • M. Szalay
    • 4
  • A. G. Williamson
    • 5
  1. 1.Department of MathematicsUtah State UniversityLoganUSA
  2. 2.Palo AltoUSA
  3. 3.MTA Matematikai Kutató IntézetBudapestHungary
  4. 4.Eötvös Loránd TudományegyetemAlgebra és Számelmélet TanszékBudapestHungary
  5. 5.Haywards Heath CollegeHaywards HeathEngland

Personalised recommendations