Skip to main content
Log in

Dependency representing Markov properties of nonstationary spike trains recorded from the cat's optic tract fibers

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The order and the values of Markov properties of nonstationary stochastic processes are inferred by the use of them-th order Markov value

and simplified dependency

, respectively:

and

HereK=0.5log2 e, and\(\left| {\hat R_m } \right|\) is the correlation coefficient determinant obtained from the ensemble averages of sample records. When an observed value

is greater than or equal to the critical value,

, the null hypothesis of the (m-1)th order,

, is rejected at the level of significance α. Hereχ 21 (α) is the chi-square value with one degree of freedom at α andN is sample size. With these statistics it was shown that the order and the values of Markov properties of spike trains of optic tractX- andY-fibers became higher and larger, respectively, after the light spot presentation; and that the values

due to negative correlation came to increase and returned to the maintained level earlier inY-fibers than inX-fibers, while the maximum values forX-fibers continued to the light off. It is discussed that Markov properties of spike trains of optic tract fibers in the visual pathway seem to constitute a significant component of the neural information code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bendat, J.S., Piersol, A.G.: Random data. Analysis and measurement procedures. New York: Wiley 1971

    Google Scholar 

  • Birk, J.R.: Enhanced specificity of information in axons with negative correlated adjacent interspike intervals. Kybernetik10, 201–203 (1972)

    PubMed  Google Scholar 

  • Blake, R., Camisa, J.M.: Temporal aspects of spatial vision in the cat. Exp. Brain Res.28, 325–333 (1977)

    PubMed  Google Scholar 

  • Bullier, J., Norton, T.T.:X andY relay cells in cat lateral geniculate nucleus: Quantitative analysis of receptive-field properties and classification. J. Neurophysiol.42, 244–273 (1979)

    PubMed  Google Scholar 

  • Cleland, B.G., Dubin, M.W., Levick, W.R.: Sustained and transient neurons in the cat's retina and lateral geniculate nucleus. J. Physiol. (London)217, 437–496 (1971)

    Google Scholar 

  • Cleland, B.G., Levick, W.R.: Brisk and sluggish concentrically organized ganglion cells in the cat's retina. J. Physiol. (London)240, 421–456 (1974)

    Google Scholar 

  • Cleland, B.G., Levick, W.R., Sanderson, K.J.: Properties of sustained and transient ganglion cells in the cat retina. J. Physiol. (London)228, 649–680 (1973)

    Google Scholar 

  • Conover, W.J.: Practical nonparametric statistics. New York: Wiley 1971

    Google Scholar 

  • Cox, D.R., Lewis, P.A.W.: The statistical analysis of series of events. New York: Wiley 1966

    Google Scholar 

  • Cramér, H.: Mathematical methods of statistics. Princeton, N.J.: Princeton Univ. Press 1963

    Google Scholar 

  • Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (London)187, 517–552 (1966)

    Google Scholar 

  • Fisz, M.: Probability theory and mathematical statistics. New York: Wiley 1963

    Google Scholar 

  • Foote, W.E., Mordes, J.P., Colby, C.L., Harrison, T.A.: Differential effect of midbrain stimulation onX-sustained andY-transient neurons in the lateral geniculate nucleus of the cat. Brain Res.127, 153–158 (1977)

    PubMed  Google Scholar 

  • Fukada, Y.: Receptive field organization of cat optic nerve fibers with special reference to conduction velocity. Vision Res.11, 209–226 (1971)

    PubMed  Google Scholar 

  • Fukada, Y., Saito, H.: The relationship between response characteristics to flicker stimulation and receptive field organization in the cat's optic nerve fibers. Vision Res.11, 227–240 (1971)

    PubMed  Google Scholar 

  • Fukada, Y., Saito, H.: Phasic and tonic cells in the cat's lateral geniculate nucleus. Tohoku J. Exp. Med.106, 209–210 (1972)

    PubMed  Google Scholar 

  • Fukada, Y., Stone, J.: Retinal distribution and central projection ofY-, X- andW-cells of the cat's retina. J. Neurophysiol.37, 749–772 (1974)

    PubMed  Google Scholar 

  • Hoffmann, K.-P.: The retinal input to the superior colliculus in the cat. Invest. Ophthalmol.11, 467–470 (1972)

    PubMed  Google Scholar 

  • Hoffmann, K.-P.: Conduction velocity in pathways from retina to superior colliculus in the cat: A correlation with receptive field properties. J. Neurophysiol.36, 409–424 (1973)

    PubMed  Google Scholar 

  • Hoffmann, K.-P., Stone, J.: Conduction velocity of afferents to cat visual cortex: A correlation with cortical receptive field properties. Brain Res.32, 460–466 (1971)

    PubMed  Google Scholar 

  • Hoffmann, K.-P., Stone, J.: Central terminations ofW-, X- andY-type ganglion cells from cat retina. Brain Res.49, 500–501 (1973)

    Google Scholar 

  • Hoffmann, K.-P., Stone, J., Sherman, S.: Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. J. Neurophysiol.35, 518–531 (1972)

    PubMed  Google Scholar 

  • Holländer, H., Vanegas, H.: The projection from the lateral geniculate onto the visual cortex in the cat. A quantitative study with horseradish peroxidase. J. Comp. Neurol.173, 519–536 (1977)

    PubMed  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (London)160, 106–154 (1962)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol.28, 229–289 (1965)

    PubMed  Google Scholar 

  • Ikeda, H., Wright, M.J.: Receptive field organization of “sustained” and “transient” retinal ganglion cells which subserve different functional roles. J. Physiol. (London)227, 769–800 (1972)

    Google Scholar 

  • Keesey, U.: Flicker and pattern recognition: A comparison of thresholds. J. Opt. Soc. Am.62, 446–448 (1972)

    PubMed  Google Scholar 

  • Kendall, M.G., Stuart, A.: The advanced theory of statistics, Vol. 1. London: Griffin 1958

    Google Scholar 

  • Kuffler, S.W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol.16, 37–68 (1953)

    PubMed  Google Scholar 

  • LeVay, S., Ferster, D.: Relay classes in the lateral geniculate nucleus of the cat and the effects of visual deprivation. J. Comp. Neurol.172, 563–584 (1977)

    PubMed  Google Scholar 

  • Maffei, L.: Spatial frequency channels-neural mechanisms. In: Handbook of sensory physiology, Vol. 8, pp. 39–66. Held, R., Leibowitz, H.W., Teuber, H.-L. (eds.). Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  • Maffei, L., Fiorentini, A.: The visual cortex as a spatial frequency analyzer. Vision Res.13, 1255–1268 (1973)

    PubMed  Google Scholar 

  • Matin, L.: Use of the glow modulator tube for visual research. Am. J. Psychol.77, 650–651 (1964)

    PubMed  Google Scholar 

  • Movshon, J.A.: Velocity preferences of simple and complex cells in the cat striate cortex. J. Physiol. (London)242, 121P-123P (1974)

    Google Scholar 

  • Movshon, J.A., Thompson, I.D., Tolhurst, D.J.: Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J. Physiol. (London)283, 53–77 (1978a)

    Google Scholar 

  • Movshon, J.A., Thompson, I.D., Tolhurst, D.J.: Receptive field organization of complex cells in the cat's striate cortex. J. Physiol. (London)283, 79–99 (1978b)

    Google Scholar 

  • Movshon, J.A., Thompson, I.D., Tolhurst, D.J.: Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. J. Physiol. (London)283, 101–120 (1978c)

    Google Scholar 

  • Nakahama, H., Ishii, N., Yamamoto, M., Saito, H.: Stochastic properties of spontaneous impulse activity in central single neurons. Tohoku J. Exp. Med.104, 373–409 (1971)

    PubMed  Google Scholar 

  • Nakahama, H., Yamamoto, N., Ishii, H., Fujii, H., Aya, K.: Dependency as a measure to estimate the order and the values of Markov processes. Biol. Cybernetics25, 208–226 (1977a)

    Google Scholar 

  • Nakahama, H., Yamamoto, M., Fujii, H., Aya, K., Tani, Y.: Dependency representing Markov properties of spike trains recorded from central single neurons. Tohoku J. Exp. Med.122, 99–111 (1977b)

    PubMed  Google Scholar 

  • Nakahama, H., Yamamoto, M., Yamamoto, I.: High speed on-line counters and analog to digital converters for neurophysiological data processing. Jpn. J. Physiol.20, 207–216 (1970)

    PubMed  Google Scholar 

  • Rodieck, R.W., Pettigrew, J.D., Bishop, P.O., Nikara, T.: Residual eye movements in receptive-field studies of paralyzed cats. Vision Res.7, 107–110 (1967)

    PubMed  Google Scholar 

  • Saito, H., Shimahara, T., Fukada, Y.: Four types of responses to light and dark spot stimuli in the cat optic nerve. Tohoku J. Exp. Med.102, 127–133 (1970)

    PubMed  Google Scholar 

  • Saito, H., Shimahara, T., Fukada, Y.: Phasic and tonic responses in the cat optic nerve fiber — stimulus-response relations. Tohoku J. Exp. Med.104, 313–323 (1971)

    PubMed  Google Scholar 

  • Shannon, C., Weaver, W.: The mathematical theory of communication. Urbana: Univ. of Illinois Press 1949

    Google Scholar 

  • Siegel, S.: Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill 1956

    Google Scholar 

  • Stone, J.: Morphology and physiology of the geniculocortical synapse in the cat: The question of parallel input to the striate cortex. Invest. Ophthalmol.11, 338–344 (1972)

    PubMed  Google Scholar 

  • Stone, J., Dreher, B.: Projection ofX- andY-cell of the cat's lateral geniculate nucleus to areas 17 and 18 of the visual cortex. J. Neurophysiol.36, 551–567 (1973)

    PubMed  Google Scholar 

  • Stone, J., Fukuda, Y.: Properties of cat retinal ganglion cells: A comparison ofW-cells withX- andY-cells. J. Neurophysiol.37, 722–748 (1974)

    PubMed  Google Scholar 

  • Stone, J., Hoffmann, K.-P.: Conduction velocity as a parameter in the organization of the afferent relay in the cat's lateral geniculate nucleus. Brain Res.32, 454–459 (1971)

    PubMed  Google Scholar 

  • Stone, J., Hoffmann, K.-P.: Very slow conducting ganglion cells in the cat's retina: A major, new functional type? Brain Res.43, 610–616 (1972)

    PubMed  Google Scholar 

  • Tolhurst, D.J.: Separate channels for the analysis of the shape and movement of a moving visual stimulus. J. Physiol. (London)231, 385–402 (1973)

    Google Scholar 

  • Walløe, L.: On the trasmission of information through sensory neurons. Biophys. J.10, 745–763 (1970)

    PubMed  Google Scholar 

  • Wilks, S.S.: Mathematical statistics. New York: Wiley 1962

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakahama, H., Aya, K., Yamamoto, M. et al. Dependency representing Markov properties of nonstationary spike trains recorded from the cat's optic tract fibers. Biol. Cybern. 35, 43–54 (1979). https://doi.org/10.1007/BF01845843

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01845843

Keywords

Navigation