Probability Theory and Related Fields

, Volume 83, Issue 4, pp 509–545 | Cite as

A stochastic version of center manifold theory

  • Petra Boxler


Random dynamical systems arise naturally if the influence of white or real noise on the parameters of a nonlinear determinstic dynamical system is studied. In this situation Lyapunov exponents attached to the linearized flow replace the real parts of the eigenvalues and describe the stability behavior of the linear system. If at least one of them vanishes then it is possible to prove the existence of a stochastic analogue of the deterministic center manifold. The asymptotic behavior of the entire system can then be derived from the lower dimensional system restricted to this stochastic center manifold. A dynamical characterization of the stochastic center manifold is given and approximation results are proved.


Manifold Dynamical System Linear System Asymptotic Behavior Lyapunov Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds tensor analysis and applications. Reading, Mass: Addison-Wesley 1983Google Scholar
  2. 2.
    Arnold, L.: Stochastic differential equations: theory and applications. New York, Wiley 1974Google Scholar
  3. 3.
    Baxendale, P.: Brownian motion in the differomorphism group I. Compos. Math.53, 19–50 (1983)Google Scholar
  4. 4.
    Beesack, P.R.: Gronwall inequalities. Carleton Math. Lect. Notes, no. 11 (1975)Google Scholar
  5. 5.
    Boothby, W.M.: An introduction to differentiable manifolds and Riemannian geometry. New York: Academic Press 1975Google Scholar
  6. 6.
    Bougerol, Ph., Lacroix, J.: Products of random matrices with applications to Schrödinger operators. Boston Basel: Birkhäuser 1985Google Scholar
  7. 7.
    Bourbaki, N.: Elements of mathematics: General topology, part 2. Paris: Hermann 1966Google Scholar
  8. 8.
    Boxler, P.: Stochastische Zentrumsmannigfaltigkeiten. Ph.D. thesis, Institut für Dynamische Systeme, Universität Bremen 1988Google Scholar
  9. 9.
    Carr, J.: Applications of centre manifold theory. Berlin Heidelberg New York: Springer 1981Google Scholar
  10. 10.
    Carverhill, A.: Flow of stochastic dynamical systems: ergodic theory. Stochastics14, 273–317 (1985)Google Scholar
  11. 11.
    Castaing, C., Valadier, M.: Convex analysis and measurable multifunctions. (Lect. Notes Math., vol. 580). Berlin Heidelberg New York: Springer 1977Google Scholar
  12. 12.
    Coddington, E.A., Levinson, N. Theory of ordinary differential equations. New York Toronto London: McGraw-Hill 1955Google Scholar
  13. 13.
    Crauel, H.: Ergodentheorie linearer stochastischer Systeme. Report no. 59, Institut für Dynamische Systeme, Universität Bremen 1981Google Scholar
  14. 14.
    Crauel, H.: Random dynamical systems: positivity of Lyapunov exponents, and Markov systems. Ph.D. thesis, Institut für Dynamische Systeme, Universität Bremen 1987Google Scholar
  15. 15.
    Dieudonné, J.: Foundations of modern analysis. New York: Academic Press 1969Google Scholar
  16. 16.
    Dunford, N., Schwartz, J.T.: Linear operators, part I. New York; Wiley 1958Google Scholar
  17. 17.
    Engl, H.W.: Random fixed point theorems In: Lakshmikantham, V. (ed.): Nonlinear equations in abstract spaces. New York: Academic Press 1978Google Scholar
  18. 18.
    Federer, H.: Geometric measure theory. Berlin Heidelberg New York: Springer 1969Google Scholar
  19. 19.
    Gantmacher, F.R.: The theory of matrices, vol. 1. New York: Chelsea 1960Google Scholar
  20. 20.
    Has'minskii, R.Z.: Stochastic stability of differential equations. Alphen: Sijthoff and Noordhoff 1980Google Scholar
  21. 21.
    Iooss, G.: Bifurcation of maps and applications. Amsterdam: North-Holland 1979Google Scholar
  22. 22.
    Kifer, Y.: Ergodic theory of random transformations. Boston Basel: Birkhäuser 1986Google Scholar
  23. 23.
    Knobloch, E., Wiesenfeld, K.A.: Bifurcations in fluctuating systems: The center-manifold approach. J Stat. Phys.33, 611–637 (1983)Google Scholar
  24. 24.
    Kunita, H.: Stochastic differential equations and stochastic flows of diffeomorphisms. École d'Été de Probabilités de Saint-Flour XII-1982, 143–303 (Lect. Notes Math., vol. 1097). Berlin Heidelberg New York: Springer 1984Google Scholar
  25. 25.
    Ledrappier, F.: Quelques propriétés des exposants caractéristique École d'Été de Probabilités de Saint-Flour XII-1982, 143–303 (Lect. Notes Math. vol. 1097). Berlin Heidelberg New York: Springer 1984Google Scholar
  26. 26.
    Lyapunov, A.M.: Problème générale de la stabilité du mouvement. Ann. Fac. Sci. Toulouse 9 (1907), 204–474. Reprint: Ann. Math. Studies, vol. 17. Princeton: Princeton University Press 1949Google Scholar
  27. 27.
    Mañé, R.: Ergodic theory and differentiable dynamics. Berlin Heidelberg New York: Springer 1987Google Scholar
  28. 28.
    Marsden, J.E., McCarcken, M. The Hopf bifurcation and its applications. Berlin Heidelberg New York: Springer 1976Google Scholar
  29. 29.
    Oseledec, V.I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc.19, 197–231 (1968)Google Scholar
  30. 30.
    Pesin, Ja.B.: Families of invariant manifolds corresponding to nonzero characteristic exponents. Izv. Akad. Nauk SSSR Ser. Mat.40, 1332–1379 (1976)Google Scholar
  31. 31.
    Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publ. Math. I.H.E.S.50, 27–58 1979Google Scholar
  32. 32.
    Sell, G.: The structure of a flow in the vicinity of an almost periodic motion. J. Differ. Eqs.27, 359–393 (1978)Google Scholar
  33. 33.
    Vanderbauwhede, A.: Center manifolds, normal forms and elementary bifurcations. In: Kirchgraber, U., Walther, H.O. (eds.): Dynamics reported, vol. 2, pp. 89–169. Teubner and Wiley 1989Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Petra Boxler
    • 1
  1. 1.Institut für Dynamische SystemeUniversität BremenBremen 33Federal Republic of Germany

Personalised recommendations