Skip to main content
Log in

Age estimation in biopsy specimens of dentin

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Determination of age at death on the basis of aspartic acid racemization in dentin is one of the most reproducible and accurate methods. In Germany, age estimation by this method has so far generally not been applied to living persons, since the extraction of a tooth exclusively for age estimation when it is not medically indicated is regarded as ethically and legally problematic. The development of a biopsy technique applicable to dentin took place against this background. Testing the technique and analysis of dentinal biopsy specimens revealed that the biopsy technique is a low-risk procedure that causes only minor discomfort to the affected person. It is readily practicable and facilitates standardized specimen removal. The relationship between the extent of aspartic acid racemization in dentinal biopsy specimens and age is very close, facilitating age estimation. A prerequisite for accurate results is the performance of biopsies under strictly standardized conditions. If this is guaranteed, age determination on the basis of aspartic acid racemization in dentinal biopsy specimens appears to be superior in precision to most other methods in living persons and can be used for all age groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brunauer LS, Clarke S (1986) Age-dependent accumulation of protein residues which can be hydrolyzed to D-aspartic acid in human erythrocytes. J Biol Chem 261:12538–12543

    PubMed  Google Scholar 

  • Clarke S (1987) Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins. Int J Pept Protein Res 30:808–821

    PubMed  Google Scholar 

  • Dalitz GD (1962) Age determination of adult human remains by teeth examination. J Forensic Sci 3:11

    Google Scholar 

  • Drusini AG (1993) Age estimation from teeth using soft X-ray findings. Anthropol Anz 51:41–46

    PubMed  Google Scholar 

  • Endris R (1979) Praktische forensische Odonto-Stomatologie. Das Gebiß als Indiz und Tatwerkzeug. Kriminalistik, Heidelberg, pp 77–102

    Google Scholar 

  • Gustafson G (1950) Age determination on teeth. J Am Dent Assoc 41:45–54

    PubMed  Google Scholar 

  • Gustafson G (1955) Altersbestimmung an Zähnen. Dtsch Zahndrztl Z 10:1763–1768

    Google Scholar 

  • Helfman PM, Bada JL (1976) Aspartic acid racemization in dentine as a measure of ageing. Nature 262:279–281

    PubMed  Google Scholar 

  • Helfman PM, Bada JL, Shou M-Y (1977) Considerations on the role of aspartic acid racemization in the aging process. Gerontology 23:419–425

    PubMed  Google Scholar 

  • Hongwei S (1989) The estimation of tooth age from attrition of the occlusal surface. Med Sci Law 29:69–73

    PubMed  Google Scholar 

  • Hongwei S, Jingtao J, Cameron JM (1991) Age determination of the molars. Med Sci Law 31:65–68

    PubMed  Google Scholar 

  • Kambe T, Yonemitsu K, Kibayashi K, Tsunenari S (1991) Application of a computer assisted image analyzer to the assessment of area and number of sites of dental attrition and its use for age estimation. Forensic Sci Int 50:97–109

    PubMed  Google Scholar 

  • Köhler S, Schmelzle R, Loitz C, Püschel K (1994) Die Entwicklung des Weisheitszahnes als Kriterium der Lebensaltersbestimmung. Ann Anat 176:339–345

    PubMed  Google Scholar 

  • Levine RS (1971) The distribution of hydroxyproline in sound human coronal dentine. Arch Oral Biol 16:473–478

    PubMed  Google Scholar 

  • Lowenson J, Clarke S (1988) Does the chemical instability of aspartyl and asparaginyl residues in proteins contribute to erythrocyte aging? Blood Cells 14:103–117

    PubMed  Google Scholar 

  • Masters PM (1983) Stereochemically altered noncollagenous protein from human dentin. Calcif Tissue Int 35:43–47

    PubMed  Google Scholar 

  • Masters PM (1985) In vivo decomposition of phosphoserine and serine in noncollagenous protein from human dentin. Calcif Tissue Int 37: 236–241

    PubMed  Google Scholar 

  • Mincer HH, Harris EF, Berryman HE (1993) The A.B.F.O. study of third molar development and its use as an estimator of chronological age. J Forensic Sci 38:379–390

    PubMed  Google Scholar 

  • Mörnstad H, Staaf V, Welander U (1994) Age estimation with the aid of tooth development: a new method based on objective measurements. Scand J Dent Res 102:137–143

    PubMed  Google Scholar 

  • Ogino T, Ogino H, Nagy B (1985) Application of aspartic acid racemization to forensic odontology: postmortem designation of age of death. Forensic Sci Int 29:259–267

    PubMed  Google Scholar 

  • Ohtani S (1994) Age estimation by aspartic acid racemization in dentin of deciduous teeth. Forensic Sci Int 68: 77–82

    PubMed  Google Scholar 

  • Ohtani S, Yamamoto K (1987) Age estimation using the racemization of aspartic acid in human dentin. 41:181–190

    Google Scholar 

  • Ohtani S, Yamamoto K (1990) Estimating age through the amino acid racemization of acid-soluble dentinal peptides. Nippon Hoigaku Zasshi 44:342–345

    PubMed  Google Scholar 

  • Ohtani S, Yamamoto K (1991) Age estimation using the racemization of amino acid in human dentin. J Forensic Sci 36:792–800

    PubMed  Google Scholar 

  • Ohtani S, Yamamoto K (1992) Estimation of age from a tooth by means of racemization of an amino acid, especially aspartic acid - comparison of enamel and dentin. J Forensic Sci 37:1061–1067

    PubMed  Google Scholar 

  • Ritz S, Schütz H-W Schwarzer B (1990) The extent of aspartic acid racemization in dentin: a possible method for a more accurate determination of age at death? Z Rechtsmed 103:457–462

    PubMed  Google Scholar 

  • Ritz S, Schütz H-W, Peper C (1993) Postmortem estimation of age at death based on aspartic acid racemization in dentin: its applicability for root dentin. Int J Legal Med 105:289–293

    PubMed  Google Scholar 

  • Rutsatz K, Sobkowiak E-M, Bienengräber V, Held M (1985) Feingewebliche Veränderungen des Pulpa-Dentin-Systems nach Präparationstrauma und Applikation von Phosphatzement. Zahn Mund Kieferheilkd 73:123–131

    Google Scholar 

  • Schumacher G-H, Schmidt H (1976) Anatomie and Biologie der Zähne, 2nd edn Fischer, Stuttgart, pp 344–355

    Google Scholar 

  • Smith GG, Williams KM, Wonnacott DM (1978) Factors affecting the rate of racemization of amino acids and their significance to geochronology. J Org Chem 43:1–5

    Google Scholar 

  • Staaf V, Mörnstad H, Welander U (1991) Age estimation based on tooth development: a test of reliability and validity. Scand J Dent Res 99:281–286

    PubMed  Google Scholar 

  • Stephenson RC, Clarke S (1989) Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem 264:6164–6170

    PubMed  Google Scholar 

  • Xiaohu X, Philipsen HP, Jablonski NG, Pang KM, Jiazhen Z (1992) Age estimation from the structure of adult human teeth: review of the literature. Forensic Sci Int 54: 23–28

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritz, S., Stock, R., Schütz, H.W. et al. Age estimation in biopsy specimens of dentin. Int J Leg Med 108, 135–139 (1995). https://doi.org/10.1007/BF01844824

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01844824

Key words

Navigation