aequationes mathematicae

, Volume 18, Issue 1–2, pp 259–265 | Cite as

Functional equations and linear transformations—permutability and inversion

  • B. P. Duggal
Short Communications


Functional Equation Linear Transformation Continuity Hypothesis Linear Manifold Mapping Adjoint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Erdely, A., Magnus, W., Oberhetfinger, F., andTricomi, F. G. Tables of Integral Transforms. 2 vols., McGraw-Hill, New York-Toronto-London, 1954.Google Scholar
  2. [2]
    Dugoal, B. P.,Functional equations and linear transformations II: classes G λ and I μ. J. lndian Math. Soc.38 (1974), 99–120.Google Scholar
  3. [3]
    Duggal, B. P.,Functional equations and linear transformations IIIA: permutability and inversion. Period. Math. Hungar. 8 (1977), to appear.Google Scholar
  4. [4]
    Duggal, B. P.,Functional equations and linear transformations IIIC: permutability. Period. Math. Hungar. 10 (1979), to appear.Google Scholar
  5. [5]
    Duggal, B. P.,Convolutions and other integral transforms. Period. Math. Hungar.7 (1976), 111–116.CrossRefMathSciNetMATHGoogle Scholar
  6. [6]
    Goldberg, R. R.,Convolutions and general transforms on L p. Duke Math. J.27 (1960), 251–259.CrossRefMathSciNetMATHGoogle Scholar
  7. [7]
    Kober, H.,On certain linear operations and relations between them. Proc. London Math. Soc.11 (1961), 434–456.CrossRefMathSciNetMATHGoogle Scholar
  8. [8]
    Kober, H.,On functional equations and bounded linear transformations. Proc. London Math. Soc.14 (1964), 495–519.CrossRefMathSciNetMATHGoogle Scholar
  9. [9]
    Kober, H.,A modification of Hilbert transform, the Weyl integral and functional equations. J. London Math. Soc.42 (1967), 42–50.CrossRefMathSciNetMATHGoogle Scholar
  10. [10]
    Kober, H.,The extended Weyl integral and related operators. Proc. Amer. Math. Soc.19 (1968), 285–291.CrossRefMathSciNetMATHGoogle Scholar
  11. [11]
    Okikiolu, G. O.,On fundamental operators and their applications. Amer. J. Math.90 (1968), 1074–1102.CrossRefMathSciNetGoogle Scholar
  12. [12]
    Okikiolu, G. O.,Fractional integrals of the H α-type. Quart. J. Math. Oxford Ser.18 (1967), 33–42.CrossRefMathSciNetMATHGoogle Scholar
  13. [13]
    Okikiolu, G. O.,Applications of fundamental operators: the operator F σ(ν) Proc. London Math. Soc.19 (1969),601–624.CrossRefMathSciNetMATHGoogle Scholar
  14. [14]
    Okikiolu, G. O.,Aspects of the Theory of Bounded Linear Operators in L p-space. Academic Press, London-New York, 1971.Google Scholar
  15. [15]
    Plancherel, M.,Quelques remarques à propos d’une note de G. H. Hardy: the resultant of two Fourier kemeis. Proc. Cambridge Philos. Soc.33 (1937), 413–418.CrossRefGoogle Scholar
  16. [16]
    de Snoo, H. S. V.,On invariant linear manifolds of Watson transforms. Quart. J. Math. Oxford Ser.24 (1973), 217–221.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1978

Authors and Affiliations

  • B. P. Duggal

There are no affiliations available

Personalised recommendations