aequationes mathematicae

, Volume 18, Issue 1–2, pp 259–265 | Cite as

Functional equations and linear transformations—permutability and inversion

  • B. P. Duggal
Short Communications


Functional Equation Linear Transformation Continuity Hypothesis Linear Manifold Mapping Adjoint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Erdely, A., Magnus, W., Oberhetfinger, F., andTricomi, F. G. Tables of Integral Transforms. 2 vols., McGraw-Hill, New York-Toronto-London, 1954.Google Scholar
  2. [2]
    Dugoal, B. P.,Functional equations and linear transformations II: classes G λ and I μ. J. lndian Math. Soc.38 (1974), 99–120.Google Scholar
  3. [3]
    Duggal, B. P.,Functional equations and linear transformations IIIA: permutability and inversion. Period. Math. Hungar. 8 (1977), to appear.Google Scholar
  4. [4]
    Duggal, B. P.,Functional equations and linear transformations IIIC: permutability. Period. Math. Hungar. 10 (1979), to appear.Google Scholar
  5. [5]
    Duggal, B. P.,Convolutions and other integral transforms. Period. Math. Hungar.7 (1976), 111–116.CrossRefMathSciNetzbMATHGoogle Scholar
  6. [6]
    Goldberg, R. R.,Convolutions and general transforms on L p. Duke Math. J.27 (1960), 251–259.CrossRefMathSciNetzbMATHGoogle Scholar
  7. [7]
    Kober, H.,On certain linear operations and relations between them. Proc. London Math. Soc.11 (1961), 434–456.CrossRefMathSciNetzbMATHGoogle Scholar
  8. [8]
    Kober, H.,On functional equations and bounded linear transformations. Proc. London Math. Soc.14 (1964), 495–519.CrossRefMathSciNetzbMATHGoogle Scholar
  9. [9]
    Kober, H.,A modification of Hilbert transform, the Weyl integral and functional equations. J. London Math. Soc.42 (1967), 42–50.CrossRefMathSciNetzbMATHGoogle Scholar
  10. [10]
    Kober, H.,The extended Weyl integral and related operators. Proc. Amer. Math. Soc.19 (1968), 285–291.CrossRefMathSciNetzbMATHGoogle Scholar
  11. [11]
    Okikiolu, G. O.,On fundamental operators and their applications. Amer. J. Math.90 (1968), 1074–1102.CrossRefMathSciNetGoogle Scholar
  12. [12]
    Okikiolu, G. O.,Fractional integrals of the H α-type. Quart. J. Math. Oxford Ser.18 (1967), 33–42.CrossRefMathSciNetzbMATHGoogle Scholar
  13. [13]
    Okikiolu, G. O.,Applications of fundamental operators: the operator F σ(ν) Proc. London Math. Soc.19 (1969),601–624.CrossRefMathSciNetzbMATHGoogle Scholar
  14. [14]
    Okikiolu, G. O.,Aspects of the Theory of Bounded Linear Operators in L p-space. Academic Press, London-New York, 1971.Google Scholar
  15. [15]
    Plancherel, M.,Quelques remarques à propos d’une note de G. H. Hardy: the resultant of two Fourier kemeis. Proc. Cambridge Philos. Soc.33 (1937), 413–418.CrossRefGoogle Scholar
  16. [16]
    de Snoo, H. S. V.,On invariant linear manifolds of Watson transforms. Quart. J. Math. Oxford Ser.24 (1973), 217–221.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1978

Authors and Affiliations

  • B. P. Duggal

There are no affiliations available

Personalised recommendations