aequationes mathematicae

, Volume 18, Issue 1–2, pp 206–217 | Cite as

Lipschitz-Nikolski\(\imath \) constants and asymptotic simultaneous approximation on theM n -operatorsconstants and asymptotic simultaneous approximation on theM n -operators

  • R. K. S. Rathore
Research Papers


This note is a study of approximation of classes of functions and asymptotic simultaneous approximation of functions by theM n -operators of Meyer-König and Zeller which are defined by
$$(M_n f)(x) = (1 - x)^{n + 1} \sum\limits_{k = 0}^\infty {f\left( {\frac{k}{{n + k}}} \right)} \left( \begin{array}{l} n + k \\ k \\ \end{array} \right)x^k , n = 1,2,....$$
Among other results it is proved that for 0<α≤1
$$\mathop {\lim }\limits_{n \to \infty } n^{\alpha /2} \mathop {\sup }\limits_{f \in Lip_1 \alpha } \left| {(M_n f)(x) - f(x)} \right| = \frac{{\Gamma \left( {\frac{{\alpha + 1}}{2}} \right)}}{{\pi ^{1/2} }}\left\{ {2x(1 - x)^2 } \right\}^{\alpha /2} $$
and if for a functionf, the derivativeD m+2 f exist at a pointx∈(0, 1), then
$$\mathop {\lim }\limits_{n \to \infty } 2n[D^m (M_n f) - D^m f] = \Omega f,$$
where Ω is the linear differential operator given by
$$\Omega = x(1 - x)^2 D^{m + 2} + m(3x - 1)(x - 1)D^{m + 1} + m(m - 1)(3x - 2)D^m + m(m - 1)(m - 2)D^{m - 1} .$$


Approximation Property Simultaneous Approximation Algebraic Polynomial Linear Differential Operator Linear Positive Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cheney, E. W. andSHARMA, A.,Bernstein power series. Canad. J. Math.16 (1964), 251–252.MathSciNetGoogle Scholar
  2. [2]
    Lupas, A. andMuller, M. W.,Approximation properties of the M n-operators. Aequationes Math.5 (1970), 19–37.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Meyer-Konig, W. andZeller, K.,Bernsteinsche Potenzreihen. Studia Math.19 (1960), 89–94.MathSciNetGoogle Scholar
  4. [4]
    Müller, M. W.,Uber die Ordnung der Approximation dutch die Folge der Operatoren yon Meyer-Kö⊁g and Zeller and dutch die Folge deren erster Ableitungen. Bull. Inst. Politehn. Iasi14 (1968), 83–90.Google Scholar
  5. [6]
    RATHORE, R. K. S.,Approximation of unbounded functions with linear positive operators. Doctoral Thesis, Technische Hogeschool Delft, 1974.Google Scholar
  6. [7]
    Rathore, R. K. S.,Lipschitz-Nikolskii constants of the gamma operators of Müller. Math. Z.141 (1975), 193–198.MATHCrossRefMathSciNetGoogle Scholar
  7. [8]
    Rathore, R. K. S.,On (L, p)-summability of a multiply differentiated Fourier series. Indag. Math.38 (1976), 217–230.MathSciNetGoogle Scholar
  8. [9]
    Sikkema, P. C.,On the asymptotic approximation with operators of Meyer-König and Zeller. Indag. Math.32 (1970), 428–440.MathSciNetGoogle Scholar
  9. [10]
    Watanabe, S. andSuzuki, Y.,Approximation of functions by generalized Meyer-König and Zeller operators. Bull. of Yamagata Univ. Natur. Sci.7(2) (1969), 123–127.MathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1978

Authors and Affiliations

  • R. K. S. Rathore
    • 1
  1. 1.Department of MathematicsIndian Institute of TechnologyKanpurIndia

Personalised recommendations