aequationes mathematicae

, Volume 18, Issue 1–2, pp 103–111 | Cite as

A note on the derived semifield planes of order 16

  • N. L. Johnson
Research Papers


Automorphism Group Translation Plane Collineation Group Baer Subplane Infinite Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    André, J.,Über Perspektivitäten in endlichen projektiven Ebenen. Arch. Math.6 (1954), 29–32.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Dembowski, P.,Finite Geometries. Springer, Berlin-Heidelberg-New York, 1968.MATHGoogle Scholar
  3. [3]
    Fouler, D. W.,Subplanes of partial spreads in translation planes. Bull. London Math. Soc.4 (1972), 32–38.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Ganley, M. J.,Baer involutions in semifields of even order. Geom. Ded.2 (1972), 499–508.MathSciNetGoogle Scholar
  5. [5]
    Hering, Ch.,On finite line transitive affine planes. Geom. Deal. 4, (1973), 387–398.MathSciNetGoogle Scholar
  6. [6]
    Jha, V.,On the automorphism groups of quasifields. Thesis, Westfield College, Univ. of London, 1972.Google Scholar
  7. [7]
    Johnson, N. L.,Collineation groups of derived semifield planes III. Arch. Math.26 (1975), 101–106.MATHCrossRefGoogle Scholar
  8. [8]
    Johnson, N. L.,Translation planes constructed from semifield planes. Pacific J. Math.36 (1971), 701–711.MATHMathSciNetGoogle Scholar
  9. [9]
    Johnson, N. L., andOstrom, T. G.,Tangentially transitive planes of order 16. J. Geometry (to appear).Google Scholar
  10. [10]
    Kleinfeld, E.,Techniques for enumerating Veblen-Wedderburn systems. J. Assoc. Comput. Mach.7 (1960), 330–337.MATHMathSciNetGoogle Scholar
  11. [11]
    Knuth, D. E.,Finite semifields and projective planes. J. Algebra2 (1965), 182–217.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Rahilly, A. J.,Finite generalized Hall planes and their collineation groups. Thesis, Univ. of Sydney, 1973.Google Scholar
  13. [13]
    Wagner, A.,On finite affine line transitive planes. Math. Z.87 (1965), 1–11.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Walter, N.,A note on tangentially transitive affine planes. Bull. London Math. Soc.8 (1976), 273–277.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1978

Authors and Affiliations

  • N. L. Johnson
    • 1
  1. 1.Department of MathematicsUniversity of IowaIowa CityUSA

Personalised recommendations