Skip to main content
Log in

Correlation between shortening velocity, force—velocity relation and histochemical fibre-type composition in rat muscles

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Isometric and isotonic contractions of three muscles in the rat hind leg (soleus, extensor digitorum longus (EDL) and peroneus longus (PL)) were recordedin situ at 35° C and with nerve stimulation. Additionally, the histochemical muscle fibre-type composition of the three muscles was determined by the method of Guth and Samaha (1970). The data obtained from soleus and EDL muscles were similar to those reported in previous studies. On the basis of twitch contraction time, rate of rise of tetanic tension and maximum shortening velocity, the contraction speed of EDL was 2–3 times higher than in soleus. In the PL muscle, the twitch contraction time, rate of tension rise and shortening velocity were 17 ms, 30Po/s and 12 muscle fibre lengths/s, respectively; the data showed that the contraction speed of PL muscle was intermediate between that of the soleus and EDL muscles. In the case of soleus, more than 75% of the cross-sectional area was occupied by type 1 (slow) fibres; in both EDL and PL muscles more than 90% of the area was occupied by type 2 (fast fibres). However, the two fast muscles (EDL and PL) had different proportions of type 2B fibres; the area occupied by the type 2B fibre complement was less than 5% in PL, whereas it was around 70% in EDL muscle. The differences in shortening velocity and force—velocity relation among the three muscles could be explained on the basis of their respective muscle fibre-type compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, R. B. &Phelps, R. O. (1984) Muscle fiber type composition of the rat hind limb.Amer. J. Anat. 171, 259–72.

    Article  PubMed  Google Scholar 

  • Bárány, M. (1967) ATPase activity correlated with speed of muscle shortening.J. Gen. Physiol. 50, 197–218.

    Article  PubMed  Google Scholar 

  • Brooke, M. H. &Kaiser, K. K. (1970) Three myosin adenosine triphosphate systems: the nature of their pH lability and sulfhydryl dependence.J. Histochem. Cytochem. 18, 670–2.

    PubMed  Google Scholar 

  • Brooke, M. H. &Kaiser, K. K. (1974) The use and abuse of muscle histochemistry.Ann. N.Y. Acad. Sci. 228, 121–44.

    PubMed  Google Scholar 

  • Brooke, M. H., Williamson, E. &Kaiser, K. K. (1971) The behaviours of four fiber types in developing and reinnervated muscle.Arch. Neurol. 25, 360–6.

    PubMed  Google Scholar 

  • Buller, A. J., Kean, C. J. C. &Ranatunga, K. W. (1987) Transformation of contraction speed in muscle following cross-reinnvervation; dependence on muscle size.J. Musc. Res. Cell Motil. 8, 504–16.

    Article  Google Scholar 

  • Buller, A. J. &Lewis, D. M. (1965) The rate of tension development in isometric tetanic contractions of mammalian fast and slow skeletal muscles.J. Physiol. 176, 337–54.

    PubMed  Google Scholar 

  • Buller, A. J. &Pope, R. (1977) Plasticity in mammalian skeletal muscle.Phil. Trans. Roy. Soc. B,278, 295–305.

    Google Scholar 

  • Burke, R. E., Levine, D. N., Tsairis, P. &Zajac, F. E. (1973) Physiological types and histochemical profiles in motor units of cat gastrocnemius.J. Physiol. 234, 723–48.

    PubMed  Google Scholar 

  • Cecchi, G., Colomo, F. &Lombardi, V. (1978). Force—velocity relation in normal and nitrate treated frog single muscle fibres during rise of tension in an isometric tetanus.J. Physiol. 285, 257–73.

    PubMed  Google Scholar 

  • Claflin, D. R. &Faulkner, J. A. (1985) Shortening velocity extrapolated to zero load and unloaded shortening velocity of whole rat skeletal muscle.J. Physiol. 359, 357–63.

    PubMed  Google Scholar 

  • Claflin, D. R. &Faulkner, J. A. (1989) The force—velocity relationship at high shortening velocities in the soleus muscle of the rat.J. Physiol. 411, 627–37.

    PubMed  Google Scholar 

  • Close, R. (1964) Dynamic properties of fast and slow skeletal muscles of the rat during development.J. Physiol. 173, 75–95.

    Google Scholar 

  • Close, R. (1967) Properties of mortor units in fast and slow skeletal muscles of the rat.J. Physiol. 193, 45–55.

    Google Scholar 

  • Close, R. (1969) Dynamic properties of fast and slow skeletal muscles of the rat after nerve cross-union.J. Physiol. 204, 331–46.

    PubMed  Google Scholar 

  • Close, R. (1972). Dynamic properties of mammalian skeletal muscles.Physiol. Rev. 52, 129–97.

    PubMed  Google Scholar 

  • Dalla Libera, L., Sartore, S., Pierobon-Bormioli, S. &Schiaffino, S. (1980). Fast-white and fast-red isomyosins in guinea pig muscles.Biochem Biophys. Res. Comm. 96, 1662–70.

    Article  PubMed  Google Scholar 

  • Donselaar, Y., Eerbeek, O., Kernell, D. &Verhey, B. A. (1987) Fibre sizes and histochemical staining characteristics in normal and chronically stimulated fast muscle of cat.J. Physiol. 382, 237–54.

    PubMed  Google Scholar 

  • Eddinger, T. J., Moss, R. L. &Cassens, R. G. (1985) Fiber number and type composition in EDL, soleus and diaphragm muscle with ageing in Fisher 344 rats.J. Histochem Cytochem. 33, 1033–41.

    PubMed  Google Scholar 

  • Elmubarak, M. H. &Ranatunga, K. W. (1984) Temperature sensitivity of tension development in a fast twitch muscle of the rat.Muscle Nerve,7, 298–303.

    Article  PubMed  Google Scholar 

  • Elmubarak, M. H. &Ranatunga, K. W. (1988) Differentiation of fast and slow muscles in the rat after neonatal denervation: a physiological study.J. Musc. Res. Cell Motil. 9, 219–32.

    Article  Google Scholar 

  • Greaser, M. L., Moss, R. L. &Reiser, P. J. (1988) Variations in contractile properties of rabbit single muscle fibres in relation to troponin T isoforms and myosin light chains.J. Physiol. 406, 85–98.

    PubMed  Google Scholar 

  • Guth, L. &Samaha, F. J. (1970) Research note. Procedure for the histochemical demonstration of actomyosin ATPase.Exp. Neurol. 28, 365–7.

    Article  PubMed  Google Scholar 

  • Hill, A. V. (1938) The heat of shortening and the dynamic constants of muscle.Proc. Roy. Soc. B 126, 136–95.

    Google Scholar 

  • Hill, A. V. (1949) The abrupt transition from rest to activity in muscle.Proc. Roy. Soc. B 136, 399–420.

    Google Scholar 

  • Jewell, B. R. &Wilkie, D. R. (1958) An analysis of mechanical components in frog's striated muscle.J. Physiol. 143, 515–40.

    PubMed  Google Scholar 

  • Josephson, R. K. &Edman, K. A. P. (1988) The consequences of fibre heterogeneity on the force-velocity relation of skeletal muscle.Acta. Physiol. Scand. 132, 341–52.

    PubMed  Google Scholar 

  • Julian, F. J., Rome, L. C., Stephenson, D. G. &Stritz, S. (1986) The maximum speed of shortening in living and skinned frog muscle fibres.J. Physiol. 370, 181–99.

    PubMed  Google Scholar 

  • Lucas, S. M., Ruff, R. L. &Binder, M. D. (1987) Specific tension measurements in single soleus and medial gastrocnemius muscle fibers of the cat.Exp. Neurol. 95, 142–54.

    Article  PubMed  Google Scholar 

  • Ranatunga, K. W. (1977) Changes produced by chronic denervation in the temperature dependent isometric contractile characteristics of rat fast and slow twitch skeletal muscles.J. Physiol. 273, 255–262.

    PubMed  Google Scholar 

  • Ranatunga, K. W. (1982) Temperature dependence of shortening velocity and rate of isometric tension development in rat skeletal muscle.J. Physiol. 329, 465–83.

    PubMed  Google Scholar 

  • Ranatunga, K. W. (1984) The force—velocity relation of rat fast- and slow-twitch muscles examined at different temperatures.J. Physiol. 351, 517–29.

    PubMed  Google Scholar 

  • Ranatunga, K. W. &Thomas, P. E. (1988) A lever system for recording shortening and tension development in rat muscle.J. Physiol. 401, 9P.

    Google Scholar 

  • Ranatunga, K. W. &Thomas, P. E. (1989) Contraction characteristics of peroneus longus muscle in the anaesthetized rat.J. Physiol. 412, 48P.

    Google Scholar 

  • Sacks, R. D. &Roy, R. R. (1982) Architecture of the hind limb muscles of cats: functional significance.J. Morphol. 173, 185–95.

    Article  PubMed  Google Scholar 

  • Schiaffino, S., Ausoni, S., Gorza, L., Saggin, L., Gundersen, K. &Lomo, T. (1988) Myosin heavy chain isoforms and velocity of shortening of type 2 skeletal muscle fibres.Acta. Physiol. Scand. 134, 575–6.

    PubMed  Google Scholar 

  • Schiaffino, S., Saggin, L., Viel, A., Ausoni, S., Sartore, S. &Gorza, L. (1986) Muscle fiber types identified by monoclonal antibodies to myosin heavy chains. InBiochemical Aspects of Physical Exercise (edited byBenzi, G., Packer, L. &Siliprandi, N.), pp. 27–34. Amsterdam: Elsevier.

    Google Scholar 

  • Sweeney, H. L., Kushmerick, M. J., Mabuchi, K., Gergely, J. &Sréter, F. A. (1986) Velocity of shortening and myosin isoenzymes in two types of rabbit fast-twitch muscle fibers.Amer. J. Physiol. 251, C431–4.

    PubMed  Google Scholar 

  • Sweeney, H. L., Kushmerick, M. J., Mabuchi, K., Sréter, F. A. &Gergely, J. (1988) Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibers.J. Biol. Chem. 263, 9034–9.

    PubMed  Google Scholar 

  • Wells, J. B. (1965) Comparison of mechanical properties between slow and fast mammalian muscles.J. Physiol. 178, 252–69.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranatunga, K.W., Thomas, P.E. Correlation between shortening velocity, force—velocity relation and histochemical fibre-type composition in rat muscles. J Muscle Res Cell Motil 11, 240–250 (1990). https://doi.org/10.1007/BF01843577

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01843577

Keywords

Navigation