Advertisement

Journal of engineering physics

, Volume 48, Issue 5, pp 602–609 | Cite as

Statistical determination of the coefficient of self-diffusion in a monatomic molecular crystal

  • É. T. Bruk-Levinson
  • O. D. Chernetsov
Article
  • 26 Downloads

Abstract

Using the statistical theory of a crystal, we calculate the coefficient of self-diffusion in a monatomic molecular crystal for diffusion by the vacancy mechanism with a Lennard-Jones (6–12) potential. The results are compared to experiment for argon, krypton, and xenon.

Keywords

Argon Statistical Physic Xenon Statistical Theory Transport Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. Chandrasekar, Stochastic Problems in Physics and Astronomy [Russian translation], IL, Moscow (1947).Google Scholar
  2. 2.
    J. Manning, Kinetics of the Diffusion of Atoms in Crystals [Russian translation], Mir, Moscow (1971).Google Scholar
  3. 3.
    B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in Solids [in Russian], Metallurgiya, Moscow (1974).Google Scholar
  4. 4.
    H. R. Clyde, “Rate processes in solids,” Rev. Mod. Phys.,39, No. 2, 373–382 (1967).Google Scholar
  5. 5.
    S. A. Rice, “Dynamical theory of diffusion in crystals,” Phys. Rev.,112, No. 3, 804–811 (1958).Google Scholar
  6. 6.
    O. P. Manley, “A method of evaluating diffusion coefficients in crystals,” J. Phys. Chem. Solids,13, Nos. 3/4, 244–250 (1960).Google Scholar
  7. 7.
    G. H. Vineyard, “Frequency factors and isotope effects in solid state rate processes,” J. Phys. Chem. Solids,3, Nos. 1/2, 121–127 (1957).Google Scholar
  8. 8.
    H. R. Glyde, “Vacancies in argon,” J. Phys. Chem. Solids,27, No. 10, 1659–1665 (1966).Google Scholar
  9. 9.
    E. T. Brook-Levinson and V. V. Belov, “Statistical method for the description of the equilibrium properties of materials at arbitrary values of the density,” Dokl. Akad. Nauk BSSR,24, No. 9, 805–808 (1980).Google Scholar
  10. 10.
    E. T. Brook-Levinson and A. V. Zakharov, “Statistical theory of vacancies in an equilibrium crystal,” Dokl. Akad. Nauk BSSR, No. 6, 514–517 (1981).Google Scholar
  11. 11.
    E. T. Brook-Levinson and A. V. Zakharov, “Statistical thermodynamics of Shottky defects in molecular and ionic crystals,” Inzh.-Fiz. Zh.,44, No. 2, 244–250 (1983).Google Scholar
  12. 12.
    V. V. Belov and E. T. Brook-Levinson, “Clusters of vacancies in crystals: Statistical description,” Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 6, 91–97 (1983).Google Scholar
  13. 13.
    E. T. Brook-Levinson and O. D. Chernetsov, “Vacancy correlation factor and small clusters of vacancies in an equilibrium crystal,” Phys. Lett.,91A, No. 4, 171–173 (1982).Google Scholar
  14. 14.
    E. T. Brook-Levinson and O. D. Chernetsov, “Statistical theory of vacancy interactions in heavy rare gas crystals,” Fiz. Nizk. Temp.,10, No. 5, 576–584 (1984).Google Scholar
  15. 15.
    L. A. Rott, Statistical Theory of Molecular Systems [in Russian], Nauka, Moscow (1979).Google Scholar
  16. 16.
    Yu. L. Klimontovich, Statistical Physics [in Russian], Nauka, Moscow (1983).Google Scholar
  17. 17.
    E. T. Brook-Levinson, “Self-consistent statistical theory of vacancies in an equilibrium crystal without using the minimum condition on the thermodynamic potential,” Dokl. Akad. Nauk BSSR,25, No. 12, 1085–1088 (1981).Google Scholar
  18. 18.
    E. T. Brook-Levinson and V. V. Belov, Statistical Theory of Equilibrium Systems at Arbitrary Densities [in Russian], Minsk (1983) (Preprint No. 3, Inst. of Heat and Mass Transfer, Academy of Sciences of the BSSR).Google Scholar
  19. 19.
    V. V. Belov and E. T. Brook-Levinson, “A statistical-mechanical explanation of crystal line structure of the heavier rare gas solids,” Phys. Lett.,80A, No. 4, 314–316 (1980).Google Scholar
  20. 20.
    E. T. Brook-Levinson and V. V. Belov, “Statistical theory of thermodynamic and structural properties of molecular crystals,” Inzh.-Fiz. Zh.,40, No. 1, 126–133 (1980).Google Scholar
  21. 21.
    S. Glesston, K. Leider, and G. Airing, Theory of Absolute Reaction Rates [Russian translation], IL, Moscow (1948).Google Scholar
  22. 22.
    E. H. C. Parker, H. R. Clyde, and B. L. Smith, “Self-diffusion in solid argon,” Phys. Rev.,176, No. 3, 1107–1110 (1968).Google Scholar
  23. 23.
    W. M. Yen and R. E. Norberg, “Nuclear magnetic resonance of Xe129 in solid and liquid xenon,” Phys. Rev.,131, No. 1, 269–275 (1963).Google Scholar
  24. 24.
    A. Berne, G. Boato, and M. De Paz, “Experiments on solid argon,” Nuovo Cimento,46B, No. 2, 182–209 (1966).Google Scholar
  25. 25.
    A. Berne, G. Boato, and M. De Paz, “Self-diffusion coefficient in solid argon,” Nuovo Cimento,24, No. 6, 1179–1181 (1962).Google Scholar
  26. 26.
    D. G. Cowgill and R. E. Norberg, “Pulsed NMR studies of self-diffusion and defect structure in liquid and solid krypton,” Phys. Rev. B,13, No. 7, 2773–2781 (1976).Google Scholar
  27. 27.
    A. V. Chadwick and J. A. Morrison, “Self-diffusion in solid krypton,” Phys. Rev. B,1, No. 6, 2748–2753 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • É. T. Bruk-Levinson
    • 1
  • O. D. Chernetsov
    • 1
  1. 1.A. V. Lykov Institute of Heat and Mass TransferAcademy of Sciences of the Belorussian SSRMinsk

Personalised recommendations