Advertisement

Journal of engineering physics

, Volume 48, Issue 5, pp 541–547 | Cite as

Mathematical boundary-layer model for a wide range of turbulent Reynolds numbers

  • V. G. Zubkov
Article
  • 30 Downloads

Abstract

Based on the e-ε turbulence model, a boundary-layer system of equations is proposed, describing the laminar, transition, and turbulent flow regimes.

Keywords

Statistical Physic Reynolds Number Flow Regime Turbulence Model Transport Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Comput. Methods Appl. Mech. Eng.,3, Pt. 2, 269–289 (1974).Google Scholar
  2. 2.
    B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence, Academic Press, London (1972).Google Scholar
  3. 3.
    W. P. Jones and B. E. Launder, “The prediction of liminarization with a two-equation model of turbulence,” Int. J. Heat Mass Transfer,15, Pt. 2, 301–314 (1972).Google Scholar
  4. 4.
    A. N. Kolmogorov, “Equations of turbulent motion of an incompressible liquid,” Izv. Akad. Nauk SSSR, Ser. Fiz.,6, Nos. 1–2, 56–58 (1942).Google Scholar
  5. 5.
    B. I. Davydov, “Statistical dynamics of an incompressible turbulent liquid,” Dokl. Akad. Nauk SSSR,136, No. 1, 47–50 (1961).Google Scholar
  6. 6.
    A. N. Kolmogorov, “Local structure of turbulence in an incompressible liquid for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR,30, No. 4, 299–303 (1941).Google Scholar
  7. 7.
    J. Laufer, “The structure of turbulence in fully developed pipe flow,” NACA Rep. No. 1174 (1954).Google Scholar
  8. 8.
    P. S. Klebanoff, “Characteristics of turbulence in a boundary layer with zero pressure gradient,” NACA Rep. No. 1247 (1955).Google Scholar
  9. 9.
    P. Bradshaw, “The turbulence structure of equilibrium boundary layers,” J. Fluid Mech.,29, No. 4, 625–645 (1967).Google Scholar
  10. 10.
    A. A. Townsend, The Structure of Turbulent Shear Flow, Cambridge Univ. Press (1976).Google Scholar
  11. 11.
    I. K. Rotta, Turbulent Boundary Layers in Incompressible Liquids [in Russian], Sudostroenie, Leningrad (1967).Google Scholar
  12. 12.
    K. Hanjalic and B. E. Launder, “Contribution toward a Reynolds stress closure for low Reynolds number turbulence,” J. Fluid Mech.,74, No. 4, 593–610 (1976).Google Scholar
  13. 13.
    J. G. Hinze, Turbulence, McGraw-Hill, New York (1975).Google Scholar
  14. 14.
    H. Schlichting, Boundary Layer, McGraw-Hill, New York (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • V. G. Zubkov
    • 1
  1. 1.I. A. Likhachev Automotive FactoryMoscow

Personalised recommendations