Skip to main content
Log in

Robust decentralized control of parallel dc/dc converters

Robuste dezentralisierte Regelung für parallele Gleichstromwandler

  • Published:
Electrical Engineering Aims and scope Submit manuscript

Contents

Robust decentralized linear feedback controllers for parallel operating dc/dc converters, using the structured singular value approach, are investigated. Different structures of decentralized controllers were applied and tested. The controllers were designed for structured and unstructured modeluncertainty. The gain directionality compensation, due to a high condition number was considered.

Übersicht

Eine robuste und dezentralisierte Regelung für parallele Gleichstromwandler wurde untersucht. Verschiedene Strukturen des Regelungsverfahren wurden angewandt und getestet. Die Regelung wurde für den Fall der strukturierten und unstrukturierten Perturbation entworfen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d :

disturbance signal

d i :

duty cycle of the switching transistorQ i

E/Ē/Ê :

sensitivity operator/nominal sensitivity operator/sensitivity with diagonal control

Ĥ:

complementary sensitivity with diagonal control

e=y−r :

error signal

e i :

source disturbance acting on thei-th unit

G, M :

interconnection matrix between the Δ blocks

I :

unity matrix

i inj :

input current of thej-th converter

i g :

load disturbance

\(K/\hat K,\hat K_1 ,\hat K_2 \) :

feedback controller/diagonal (decentralized) controllers

k :

matrix condition number

kv :

(worst-case) closed-loop velocity constant

k d,k d1,k d2 :

adjustable parameters of the diagonal controllers

H H ,L E :

the perturbation of the diagonal model whenP is approximated with\(\hat P\)

l u :

upper bound of modeluncertainty (modeluncertainty weighting operator)

NP :

nominal performance measure of the closed-loop system

P :

matrix transfer function of the plant (control-to-output)

P n :

matrix transfer function of the plant (disturbance-to-output)

\(\tilde P/\hat P\) :

model of the plant P/diagonal model of the plantP

RP :

robust performance measure of the closed-loop system

RS :

robust stability measure of the closed-loop system

r :

reference signal

s :

complex Laplace variable

sup x∈A {f(x)}:

the least upper bound of the functionf(x) for anyxA

\(U = (\bar u,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} )^T \) :

left singular vector matrix

\(\bar u/\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{u} \) :

left singular vectors associated with\(\bar \sigma /\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\sigma } \)

u :

control variable

\(V = (\bar v,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{v} )^T \) :

right singular vector matrix

\((\bar v,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{v} )\) :

right singular vectors associated with\(\bar \sigma /\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\sigma } \)

v ont :

output voltage of the parallel operating converters

W p :

sensitivity weighting operator

y :

controlled variable

ΔμΔ:

normalized perturbation of the plant

δ i :

load disturbance between the units

μΔ(A):

structured singular value of the matrix A computed according to the structure of the block diagonal matrix Δ.

Φ:

diagonal matrix of the singular values

σ i (A):

i-th singular value of the matrixA

\(\bar \sigma /\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\sigma } \) :

maximal/minimal singular value

τ s :

(worst-case) dominant closed-loop time constant

‖@‖2 :

matrix and vector 2-norm (Euclidean norm)

‖@‖ m :

multiplicative norm (or seminorm)

NP:

nominal performance

NS:

nominal stability

RP:

robust performance

RS:

robust stability

References

  1. Nett, N.;Manousiothakis, V.: Eucledian Condition and Block Relative Gain; Connections, Conjectures and Clarifications. IEEE Trans. Automat. Contr. AO(32) (1987) 405–407

    Google Scholar 

  2. Skogestead, S.;Morari, M.;Doyle, J. C.: Robust Control of Ill-Conditioned Plants High-Purity Distillation. IEEE Trans. Automat. Contr. AC (33) (1988) 1092–1105

    Google Scholar 

  3. Morari, M.;Zafirious, E.: Robust Process Control. Englewood Cliffs, New Jersey; Prentice-Hall 1989

    Google Scholar 

  4. Mitchell, D. M.: DC-DC, Switching Regulator Analysis. New York, USA: McGraw-Hill 1986

    Google Scholar 

  5. Garabandić, Dj.; Petrovic, T.: Robust Controllers for PWM DC/DC converters using Internal-Model-Control (IMC) design. Proc IME part I: Journal of Systems and Control Engineering (1993) 127–134

  6. Garabandić, Dj.;Petrovic, T.: Modeling Parallel Operating Switch Mode Power Supplies. IEEE Trans. Ind. Electronics Vol. 42 (1995) 545–551

    Google Scholar 

  7. Doyle, J. C.; Wall, J. C.; Tein, G. S.: Performance and Robustness analysis for Structured uncertainty. In Proc. 21 st IEEE Conf. Decision Contr., Orlando, FL-USA (1982)

  8. Doyle, J. C.: Structured Uncertainty in Control Systems Design. In Proc. 24th IEEE Conf. Decision Contr., Ft. Lauderdale, FL-USA (1985)

  9. Doyle, J. C.;Stein, G.: Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis. IEEE Trans. Automat. Contr. AC (26) (1981) 4–16

    Google Scholar 

  10. Zames, G.;Bensoussan, D.: Multivariable Feedback, Sensitivity, and Decentralized Control. IEEE Trans. Automat. Contr. AC (28) (1983) 1030–1035

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garabandić, D., Petrović, T. Robust decentralized control of parallel dc/dc converters. Electrical Engineering 79, 47–53 (1996). https://doi.org/10.1007/BF01840707

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01840707

Keywords

Navigation