Journal of engineering physics

, Volume 16, Issue 3, pp 352–356 | Cite as

The equations of state and the thermodynamic properties of inert gases in the interval from the normal boiling point to 1300°k at pressures below 1000 bar

I. Krypton
  • M. P. Vulkalovich
  • V. V. Altunin
  • G. A. Spiridonov
Article
  • 36 Downloads

Abstract

Statistical processing on a computer of the most reliable p, v, and T data provided the basis for the plotting and discussion of the equation of state for gaseous krypton with T = 120–1300°K and p = 1-1000 bar.

Keywords

Statistical Physic Boiling Statistical Processing Thermodynamic Property Boiling Point 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. G. Fastovskii (editor), Inert Gases [in Russian], Atomizdat, Moscow (1964).Google Scholar
  2. 2.
    N. B. Vargaftik, Handbook on the Thermophysical Properties of Gases and Liquids [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  3. 3.
    Argon, Helium, and the Rare Gases, Interscience Publication, New York-London (1961).Google Scholar
  4. 4.
    M. P. Vukalovich, V. V. Altunin, and G. A. Spiridonov, Teplofiz. Vys. Temp.,5, 265 (1967).Google Scholar
  5. 5.
    M. P. Vukalovich, V. V. Altunin, and G. A. Spiridonov, Teplofiz. Vys. Temp.,5, 528 (1967).Google Scholar
  6. 6.
    M. P. Vukalovich, V. V. Altunin, and G. A. Spiridonov, Reports from the Science-Engineering Conference on the Results of Scientific Research Work for 1966–1967. Thermophysics Subsection [in Russian], Izd-vo MEI (1967).Google Scholar
  7. 7.
    V. V. Altunin and G. A. Spiridonov, Reports of the Science-Engineering Conference on the Results of Scientific Research Work for 1966–1967. Thermophysics Subsection [in Russian], Izd-vo MEI (1967), pp. 10–22.Google Scholar
  8. 8.
    W. Ramsay and M. W. Travers, Trans. Roy. Soc.,A197, 47 (1901).Google Scholar
  9. 9.
    J. Beattie et al., J. Chem. Phys.,20, 1613 (1952).Google Scholar
  10. 10.
    E. Whalley and W. Schneider, Trans. ASME,76, 1001 (1954).Google Scholar
  11. 11.
    B. Fender and G. Halsey, J. Chem. Phys.,36, 1881 (1962).Google Scholar
  12. 12.
    G. Thomaes and R. Steenwinkel, Nature,193, 160 (1962).Google Scholar
  13. 13.
    N. J. Trappeniers et al., Physica,32, 1503 (1966).Google Scholar
  14. 14.
    R. D. Weir et al., Trans. Farad. Soc.,63, 1320 (1967).Google Scholar
  15. 15.
    J. Meihuizen and C. A. Crommelin, Physica,4, 1 (1937).Google Scholar
  16. 16.
    E. Mathias, C. A. Crommelin, and J. Meihuizen, Commun. Phys. Lab., Univ. Leiden, No. 248b (1937).Google Scholar
  17. 17.
    A. Michels et al., Physica,18, 63 (1952).Google Scholar
  18. 18.
    M. P. Freeman and G. D. Halsey, J. Phys. Chem.,60, 1119 (1956).Google Scholar
  19. 19.
    R. H. Beaumont et al., Proc. Phys. Soc,78, 1462 (1961).Google Scholar
  20. 20.
    Yu. P. Blagoi et al., Zh. Fiz. Khim.,41, 1699 (1967).Google Scholar
  21. 21.
    W. B. Jepson and J. S. Rowlinson, J. Chem. Phys.,23, 1599 (1955).Google Scholar
  22. 22.
    V. V. Altunin and A. V. Gvozdkov, Inzh. Fiz. Zh.,16, No.2 (1969).Google Scholar
  23. 23.
    R. D. Cunn et al., Cryogenics,6, 324 (1966).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • M. P. Vulkalovich
    • 1
  • V. V. Altunin
    • 1
  • G. A. Spiridonov
    • 1
  1. 1.Power Engineering InstituteMoscow

Personalised recommendations