aequationes mathematicae

, Volume 33, Issue 2–3, pp 194–207 | Cite as

A class of 4-pseudomanifolds similar to the lens spaces

  • Anna Donati
Research Papers
  • 18 Downloads

Abstract

A family of 4-dimensional pseudomanifolds is introduced using a standard graph-theoretical representation of lens spaces Some homeomorphisms between these “lens-like” spaces are established, the computation of their fundamental groups and of bounds for their genera are carried out

AMS (1980) subject classification

Primary 57P10, 57M15 Secondary 57M99, 05C10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cavicchioli, A, Grasselli, L andPezzana, M,Su di una decomposizione normale per le n-varieta chiuse Boll Un Mat Ital17-B (1980), 1146–1165Google Scholar
  2. [2]
    Donati, A andGrasselli, L,Gruppo dei colori e cristallizzazioni normali' degli spazi lenticolart Boll Un Mat Ital1-A (1982), 359–366Google Scholar
  3. [3]
    De Paris, G andVolzone, G,Omologia di grafi colorati sugli spigoli Atti Sem Mat Fis Univ Modena32 (1983), 216–231Google Scholar
  4. [4]
    Ferri, M,Una rappresentazione delle n-varieta topologiche triangolabili mediante grafi (n + 1)-colorati Boll Un Mat Ital13-B (1976), 250–260Google Scholar
  5. [5]
    Ferri, M,Color switching and homeomorphism of manifolds Canad J Math (to appear)Google Scholar
  6. [6]
    Ferri, M andGagliardi, C,Crystallization moves Pacific J Math100 (1982), 85–103Google Scholar
  7. [7]
    Ferri, M andGagliardi, C,The only genus zero n-manifold is 2n Proc Amer Math Soc85 (1982), 638–642Google Scholar
  8. [8]
    Gagliardi, C,Regular imbeddings of edge-coloured graphs Geom Dedicata11 (1981), 397–414Google Scholar
  9. [9]
    Gagliardi, C,Extending the concept of genus to dimension n Proc Amer Math Soc81 (1981), 473–481Google Scholar
  10. [10]
    Gagliardi, C,How to deduce the fundamental group of a closed n-manifold from a contracted triangulation J Combin Inform System Sci4 (1979), 237–252Google Scholar
  11. [11]
    Harary, F,Graph theory Addison-Wesley, Reading, Mass, 1969Google Scholar
  12. [12]
    Hilton, P J andWylie, S,An introduction to algebraic topology — homology theory Cambridge Univ Press, Cambridge, 1960Google Scholar
  13. [13]
    Maunder, C R F,Algebraic topology Cambridge Univ Press, Cambridge, 1980Google Scholar
  14. [14]
    Pezzana, M,Sulla struttura topologica delle varieta compatte Atti Sem Mat Fis Univ Modena23 (1974), 269–277Google Scholar
  15. [15]
    Rourke, C andSanderson, B,Introduction to piecewise-linear topology Springer Verlag, Berlin—New York, 1972Google Scholar
  16. [16]
    Seifert, H andThrelfall, W,Lehrbuch der Topologie Chelsea Pub Co, New York, 1947Google Scholar

Copyright information

© Birkhauser Verlag 1987

Authors and Affiliations

  • Anna Donati
    • 1
  1. 1.Dipartimento di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations