Advertisement

Algorithmica

, Volume 5, Issue 1–4, pp 545–559 | Cite as

Efficient parallel and sequential algorithms for 4-coloring perfect planar graphs

Article

Abstract

We present an efficient algorithm for 4-coloring perfect planar graphs. The best previously known algorithm for this problem takesO(n 3/2) sequential time, orO(log4 n) parallel time withO(n3) processors. The sequential implementation of our algorithm takesO(n logn) time. The parallel implementation of our algorithm takesO(log3 n) time withO(n) processors on a PRAM.

Key words

Planar graphs Perfect graphs 4-Coloring algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Berge,Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.MATHGoogle Scholar
  2. [2]
    J. A. Bondy and U. S. R. Murty,Graph Theory with Applications, North-Holland, New York, 1980.Google Scholar
  3. [3]
    J. F. Boyar and H. J. Karloff, Coloring Planar Graphs in Parallel,J. Algorithms,8 (1987), pp. 470–479.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    N. Chiba, T. Nishizeki, and N. Saito, A Linear 5-Coloring Algorithm of Planar Graphs,J. Algorithms,2 (1981), pp. 317–327.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    N. Chiba and N. Takao, Arbority and Subgraph Listing Algorithms,SIAM J. Comput.,14, 1 (1985), pp. 210–223.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    R. Cole, Parallel Merge Sort,Proc. 27th IEEE Symposium on Foundations of Computer Science, 1986, pp. 511–517.Google Scholar
  7. [7]
    G. N. Frederickson, On Linear-time Algorithms for Five Coloring Planar Graphs,Inform. Process. Lett.,19 (1984), pp. 219–224.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    A. V. Goldberg, S. A. Plotkin, and G. E. Shannon, Parallel Symmetry Breaking in Sparse Graphs,Proc. 19th ACM Symposium on Theory of Computing, 1987, pp. 315–325.Google Scholar
  9. [9]
    M. Golumbic,Algorithmic Graph Theory and Perfect Graphs, Academic Press, Orlando, FL, 1980.MATHGoogle Scholar
  10. [10]
    T. Hagerup, M. Chrobak, and K. Diks, Parallel 5-Coloring of Planar Graphs,Proc. 14th International Colloquium on Automata, Language and Programming, 1987, pp. 304–313.Google Scholar
  11. [11]
    J. Hopcroft and R. Tarjan, Efficient Planarity Testing,J. Assoc. Comput. Mach.,21 (1974), pp. 549–568.MATHMathSciNetGoogle Scholar
  12. [12]
    W. L. Hsu, Coloring Planar Perfect Graphs by Decomposition,Combinatorica,6,4 (1986), pp. 381–385.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    A. Itai and M. Rodeh, Finding a Minimum Circuit in a Graph,SIAM J. Comput.,7,4 (1978), pp. 413–423.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    P. N. Klein and J. H. Reif, An Efficient Parallel Algorithm for Planarity,Proc. 27th IEEE Symposium on Foundations of Computer Science, 1986, pp. 465–477.Google Scholar
  15. [15]
    R. J. Lipton and R. E. Miller, A Batching Method for Coloring Planar Graphs,Inform. Process. Lett.,7,4 (1978), pp. 185–188.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    L. Lovasz, A Characterization of Perfect Graphs,J. Combin. Theory Ser. B,13 (1972), pp. 95–98.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    D. Matula, Y. Shiloach, and R. Tarjan, Two Linear Time Algorithms for 5-Coloring a Planar Graph, Technical Report STAN-CS-80-830, Department of Computer Science, Stanford University, 1980.Google Scholar
  18. [18]
    G. Miller and J. Reif, Parallel Tree Contraction and Its Applications,Proc. 26th IEEE Symposium on Foundations of Computer Science, 1985, pp. 478–489.Google Scholar
  19. [19]
    J. Naor, A Fast Parallel Coloring of Planar Graphs with Five Colors,Inform. Process. Lett.,25 (1987), pp. 51–53.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    C. Papadimitriou and M. Yannakakis, The Clique Problem for Planar Graphs,Inform. Process. Lett.,13,4 (1981), pp. 131–133.CrossRefMathSciNetGoogle Scholar
  21. [21]
    Y. Shiloach and U. Vishkin, AnO(logn) Parallel Connectivity Algorithm,J. Algorithms,3 (1982), pp. 57–67.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    I. A. Stewart, An Algorithm for Coloring Perfect Planar Graphs,Proc. 7th Conference on Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science, Vol. 287, Springer-Verlag, Berlin, 1987, pp. 58–63.Google Scholar
  23. [23]
    I. A. Stewart, A Parallel Algorithm to Four-Color a Perfect Planar Graph, presented at the 14th International Workshop on Graph-Theoretic Concepts in Computer Science, Amsterdam, June 1988.Google Scholar
  24. [24]
    A. Tucker, The Strong Perfect Graph Conjecture for Planar Graphs,Canad. J. Math.,25 (1973), pp. 103–114.MATHMathSciNetGoogle Scholar
  25. [25]
    A. Tucker and D. Wilson, AnO(n 2) Algorithm for Coloring Perfect Planar Graphs,J. Algorithms,5 (1984), pp. 60–68.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Xin He
    • 1
  1. 1.Department of Computer ScienceState University of New York at BuffaloBuffaloUSA

Personalised recommendations