Advertisement

aequationes mathematicae

, Volume 38, Issue 2–3, pp 146–154 | Cite as

A functional equation of Ih-Ching Hsu

  • John S. Lew
Research Papers
  • 21 Downloads

Summary

A recent note of Ih-Ching Hsu poses an unsolved problem, to wit, the general solution of the functional equation g(x1, x2) + g(φ1(x1), φ2(x2)) = g(x1, φ2(x2)) + g(φ1(x1),x2), where the φi are given functions. This short paper obtains the general solution. It gives conditions which imply that anycontinuous solution has form g1(x1) + g2(x2).

AMS (1980) subject classification

Primary 39B40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanchard, P., 1984,Complex analytic dynamics on the Riemann sphere. Bull. Amer. Math. Soc. (N.S.)11 (1984), 85–141, Section 4.Google Scholar
  2. Collet, P. andEckmann, J.-P., 1980,Iterated Maps on the Interval as Dynamical Systems. Birkhäuser, Boston, 1980, p. 63.Google Scholar
  3. Gelbaum, B. R. andOlmsted, J. M. H., 1964,Counterexamples in Analysis. Holden-Day, Inc., San Francisco, 1964.Google Scholar
  4. Halmos, P. R., 1956,Lectures on Ergodic Theory. Mathematical Society of Japan, Tokyo, 1956, p. 25.Google Scholar
  5. Hsu, I.-C., 1986,Wanted: the general solution or else. Amer. Math. Monthly93 (1986), 371–372.Google Scholar
  6. Kelley, J. L., 1955,General Topology. D. Van Nostrand Co., New York, 1955, pp. 115–118.Google Scholar
  7. Kuczma, M., 1968,Functional Equations in a Single Variable. PWN—Polish Scientific Publishers, Warszawa, 1968.Google Scholar
  8. Lyche, R. T., 1924,Sur l'equation fonctionelle d'Abel. Fund. Math.5 (1924), 331–333.Google Scholar
  9. Sullivan, D. P., 1985,Quasiconformal homeomorphisms and dynamics I. Ann. of Math.122 (1985), 401–418.Google Scholar
  10. Targonski, G., 1981,Topics in Iteration Theory. Vandenhoek and Ruprecht, Göttingen and Zurich, 1981.Google Scholar

Copyright information

© Birkhäuser Verlag 1989

Authors and Affiliations

  • John S. Lew
    • 1
  1. 1.Mathematical Sciences Dept.IBM Research Division, T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations