Veterinary Research Communications

, Volume 19, Issue 3, pp 195–203 | Cite as

The concentration of ionized magnesium in serum during the periparturient period of non-paretic dairy cows

  • J. -L. Riond
  • N. Kocabagli
  • U. E. Spichiger
  • M. Wanner


Ion-selective electrodes have recently been designed for determining the ionized concentration of magnesium (Mg2+) in serum. This development may allow new insights into some metabolic diseases of cattle. For this report, the concentrations of Mg2+, total magnesium (Mgtot), ionized calcium (Ca2+), total calcium (Catot), and inorganic phosphate (Pi) were determined in sera from seventeen 3-to 16-year-old Brown Swiss and crossed Simmental/Red Holstein cows during the periparturient period. In each animal, a transient increase of Mg2+ and Mgtot serum concentrations was observed in association with the transient decrease in serum concentrations of Ca2+, Catot and Pi after parturition. On average, throughout the study, the serum Mg2+ concentrations were 68.5% of those of Mgtot, whereas the serum Ca2+ concentrations were 52% of those of Catot. The possible mechanisms involved in the transient increase of Mg2+ and Mgtot serum concentrations are discussed.


cow hypocalcaemia inorganic phosphate ionized calcium ionized magnesium parathyroid hormone serum 



ionized calcium


total calcium


ionized magnesium


total magnesium


inorganic phosphate


parathyroid hormone


parathyroid homrone related protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnes, F., Sartorelli, P., Bisso, M.C. and Dominoni, S., 1993. Ionized calcium in calf serum: relation to total serum calcium, albumin, total protein and pH.Journal of Veterinary Medicine Series A,40, 605–608Google Scholar
  2. Barlet, J.-P., Abbas, S.K., Care, A.D., Davicco, M.-J. and Rouffet, J., 1993. Parathyroid hormone-related peptide and milking-induced phosphaturia in dairy cows.Acta Endocrinologica,129, 332–336Google Scholar
  3. Blum, J.W., Ramberg, C.F., Johnson, K.G. and Kronfeld, D.S., 1972. Calcium (ionized and total), magnesium, phosphorus, and glucose in plasma from parturient cows.American Journal of Veterinary Research,33, 51–56Google Scholar
  4. Braak, A.E. van de Klooster, A.T. van't, Hal-van Gestel, J.C. van, and Malestein, A., 1984. Influence of stage of lactation and calcium level of the ration on mobilisation rate of calcium and excretion of hydroxyproline in urine in dairy cows. Studies with Na2EDTA infusions in monozygotic twins.Zentralblatt für Veterinärmedizin Reihe A,31, 725–739Google Scholar
  5. Brink, E.J. and Beynen, A.C., 1992. Nutrition and magnesium absorption: a review.Progress in Food and Nutrition Science,16, 125–162Google Scholar
  6. Burnatowska, M.A., Harris, C.A., Sutton, R.A.L. and Dirks, J.H., 1977. Effects of PTH and cAMP on renal handling of calcium, magnesium, and phosphate in the hamster.American Journal of Physiology,233, F514-F518Google Scholar
  7. De Rouffignac, C., Mandon, B., Wittner, M. and Di Stefano, A., 1993. Hormonal control of renal magnesium handling.Mineral and Electrolyte Metabolism,19, 226–231Google Scholar
  8. Forman, D.T. and Lorenzo, L., 1991. Ionized calcium: Its significance and clinical usefulness.Annals of Clinical and Laboratory Science,21, 297–304Google Scholar
  9. Goff, J.P., Littledike, E.T. and Horst, R.L., 1986. Effect of synthetic bovine parathyroid hormone in dairy cows: prevention of hypocalcemic parturient paresis.Journal of Dairy Science,69, 2278–2289Google Scholar
  10. Green, J., 1994. The physicochemical structure of bone: cellular and noncellular elements.Mineral and Electrolyte Metabolism,20, 7–15Google Scholar
  11. Grill, V., Hillary, J., Ho, P.M.W., Law, F.M.K., MacIssac, R.J., MacIssac, I.A., Moseley, J.M. and Martin, T.J., 1992. Parathyroid hormone-related protein: a possible endocrine function in lactation.Clinical Endocrinology,37, 405–410Google Scholar
  12. Halse, K., 1961. Changes in serum calcium and magnesium in cows subjected to short periods of fasting.Proceedings of the VIII International Grassland Congress, Reading, 1960, (The Alden Press, Oxford, UK), 553–558Google Scholar
  13. Halse, K., 1984. Calcium effects on renal conservation of magnesium in cows.Acta Veterinaria Scandinavica,25, 213–228Google Scholar
  14. Hardwick, L.L., Jones, M.R., Brautbar, N. and Lee, D.B.N., 1991. Magnesium absorption: mechanisms and the influence of vitamin D, calcium and phosphate.Journal of Nutrition,126, 13–23Google Scholar
  15. Horst, R.L., Goff, J.P. and Reinhardt, T.A., 1994. Calcium and vitamin D metabolism in the dairy cow.Journal of Dairy Science,77, 1936–1951Google Scholar
  16. Hove, K., 1985. Cyclic changes in plasma calcium and the calcium homeostatic endocrine system of the postparturient dairy cow.Journal of Dairy Science,69, 2072–2082Google Scholar
  17. Kocabagli, N., Riond, J.-L., Spichiger, U.E. and Wanner, M., 1995. Parathyroid hormone-related protein and calcium homeostasis during the periparturient period of dairy cows.American Journal of Veterinary Research,56, 380–385Google Scholar
  18. Kronenberg, H.M., 1993. Parathyroid hormone: mechanism of action. In: M.J. Favus (ed.),Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Raven Press, New YorkGoogle Scholar
  19. Kvart, C., Larsson, L. and Öhman, S., 1980. Influence of an electrode change on reference values for cow serum ionized calcium.Acta Veterinaria Scandinavica,21, 454–456Google Scholar
  20. Kvart, C., Björsell, K.A. and Larsson, L., 1982. Parturient paresis in cow: serum ionized calcium concentrations before and after treatment with different calcium solutions — classification of different degrees of hypo- and hypercalcemia.Acta Veterinaria Scandinavica,23, 184–196Google Scholar
  21. Larsson, L., Björsell, K.A., Kvart, C. and Öhman, S., 1983. Clinical signs and serum ionized calcium in parturient paretic cows.Zentralblatt für Veterinärmedizin Reihe A,30, 401–409Google Scholar
  22. Lincoln, S.D. and Lane, V.M., 1990. Serum ionized calcium concentration in clinically normal dairy cattle, and changes associated with calcium abnormalities.Journal of the American Veterinary Medical Association,197, 1471–1474Google Scholar
  23. Littledike, E.T. and Goff, J., 1987. Interactions of calcium, phosphorus, magnesium and vitamin D that influence their status in domestic meat animals.Journal of Animal Science,65, 1727–1743Google Scholar
  24. Luthman, J. and Korpe, C., 1993. Vitamin D status and hypocalcemic response to protamine in exercised and non-exercised dairy cows.Acta Veterinaria Scandinavica,34, 53–57Google Scholar
  25. Martens, H., 1983. Saturation kinetics of magnesium efflux across the rumen wall in heifers.British Journal of Nutrition,49, 153–158Google Scholar
  26. Martens, H., Harmeyer, J. and Michael, H., 1978. Magnesium transport by isolated rumen epithelium of sheep.Research in Veterinary Science,24, 161–168Google Scholar
  27. Matsui, T., Yano, H., Kawabata, T. and Harumato, T., 1994. The effect of suppressing bone resorption on Mg metabolism in sheep (Ovis aries).Comparative Biochemistry and Physiology,107, 233–236Google Scholar
  28. Neuman, W.F. and Neuman, M.W., 1958. Surface chemistry. In:The Chemical Dynamics of Bone Mineral, (The University of Chicago Press, Chicago), 55–100Google Scholar
  29. Potts, J.T., Buckle, R.M., Sherwood, L.M., Ramberg, C.F., Mayer, C.P., Kronfeld, D.S., Deftos, L.J., Care, A.D. and Aurbach, G.D., 1968. Control of secretion of parathyroid hormone: In: R.V. Talmage, L.F. Bélanger and I. Clarke (eds),Parathyroid Hormone and Thyrocalcitonin (Calcitonin), Proceedings of the Third Parathyroid Conference, Montreal, Canada, 1967, (Excerpta Medica, Amsterdam), 407–416Google Scholar
  30. Reinhardt, T.A., Horst, R.L., and Goff, J.P., 1988. Calcium, phosphorus, and magnesium homeostasis in ruminants.Veterinary Clinics of North America: Food Animal Practice,4, 331–350Google Scholar
  31. Riond, J.-L., Kocabagli, N., Spichiger, U.E. and Wanner, M., 1994. Interdependence of serum calcium, magnesium and phosphorus during the periparturient period in dairy cows. In: D. Giesecke (ed.),Proceedings of the Society of Nutrition Physiology, Göttingen, Germany, (DLG-Verlag, Frankfurt am Main),2, 77Google Scholar
  32. Rizzoli, R., Caverzasio, J., Chapuy, M.C., Martin, T.J. and Bonjour, J.P., 1989. Role of bone and kidney in parathyroid hormone-related peptide-induced hypercalcemia in rats.Journal of Bone and Mineral Research,4, 759–765Google Scholar
  33. Rossi, R. and Scharrer, E., 1992. Circadian patterns of drinking and eating in pigmy goats.Physiology of Behaviour,51, 895–897Google Scholar
  34. Ryan, M.P., 1993. Interrelationships of magnesium and potassium homeostasis.Mineral and Electrolyte Metabolism,19, 290–295Google Scholar
  35. SAS/STAT User's Guide, 1989. Version 6, 4th edn, vols. 1 and 2 (SAS Institute, Cary, NC)Google Scholar
  36. Sechen, S.J., Bremel, R.D. and Jorgensen, N.A., 1988. Prolactin, estradiol, and progesterone changes in paretic and nonparetic cows during the periparturient period.American Journal of Veterinary Research,49, 411–416Google Scholar
  37. Shappell, N.W., Herbein, J.H., Deftos, L.J. and Aiello, R.J., 1987. Effects of dietary calcium and age on parathyroid hormone, calcitonin and serum and milk minerals in the periparturient dairy cow.Journal of Nutrition,117, 201–207Google Scholar
  38. Spichiger, U.E., 1992. Efficiency of the determination of magnesium levels in body fluids in human medicine.Functional Neurology, 7 (supplement 2), 41–47Google Scholar
  39. Spichiger, U.E. and Wild, R., 1994. Magnesium the forgotten ion. In: J. Portaet al. (eds),Proceedings of the International Mg2+-days, Bad Radkersburg, Austria, 1994, (Leykam Buchgesellschaft, Graz), 19–37Google Scholar
  40. Spichiger, U.E., Eugster, R., Citterio, D., Li, H., Schmid, A. and Simon, W., 1994. Magnesium activity measurements: facts and enthusiasm. In: S. Golf, D. Dralle and L. Vecchiet (eds),Magnesium 1993, (John Libbey, London), 49–60Google Scholar
  41. Toffaletti, J., Cooper, D.L. and Lobaugh, B., 1991. The response of parathyroid hormone to specific changes in either ionized calcium, ionized magnesium, or protein-bound calcium in humans.Metabolism,40, 814–818Google Scholar
  42. Zepperitz, H., 1990. Der Einfluss des Ausmelkens auf den Mineralstoffgehalt von Blut und Kolostrum sowie auf das Auftreten der Gebärparese bei Milchkühen in den ersten zwei Tagen nach der Geburt.Monatshefte für Veterinär-Medizin,45, 371–375Google Scholar
  43. Zepperitz, H. and Gürtler, H., 1992. Ionisiertes Calcium und Gesamtcalcium im Blut von Rindern, Schafen, Schweinen und Pferden verschiedener Alters- und Reproduktionsstadien und Nutzungsrichtungen.Berliner und Münchener Tierärztliche Wochenschrift,105, 328–332Google Scholar
  44. Zepperitz, H. and Schwabe, H., 1993. Zur Wirkung von parenteral appliziertem 25-Hydroxycholecalciferol und 1-alpha-Hydroxycholecalciferol auf die Mineralstoffkonzentrationen im Blutplasma von hochträchtigen Kühen.Berliner und Münchener Tierärztliche Wochenschrift,106, 183–188Google Scholar
  45. Zepperitz, H., Gürtler, H., Schäfer, M. and Glatzel, E., 1994. Einfluss einer Prophylaxe der Gebärparese mit 1-alpha-Hydroxycholecalciferol auf die Konzentrationen an ionisiertem Calcium im Blut und weiteren Mineralstoffen im Blutplasma bei der Milchkuh.Monatshefte für Veterinär-Medizin,49, 13–21Google Scholar

Copyright information

© Kluwer Academic Publishers bv 1995

Authors and Affiliations

  • J. -L. Riond
    • 1
  • N. Kocabagli
    • 1
  • U. E. Spichiger
    • 2
  • M. Wanner
    • 1
  1. 1.Institute of Veterinary Physiology, Division of Animal NutritionUniversity of ZurichZurichSwitzerland
  2. 2.Centre of Chemical Sensors, Biosensors and (Bio-) Analytical Chemistry, Department of PharmacySwiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations