Advertisement

Protoplasma

, Volume 25, Issue 1, pp 550–569 | Cite as

On the molecular structure of chromosomes

  • D. M. Wrinch
Abhandlungen

Summary

It is suggested that the construction of molecular models of the chromosome may prove to be a fruitful way of attacking the fundamental problems of cytology and genetics. Certain micelles consisting of molecules of protamine-nucleate are suggested for consideration. They are designed to interpret in molecular terms the postulates of genetics and the nature of the gene, and are constructed with special reference to the findings of the cytologists as to the capacity of the chromosomes to swell, to contract, to grow and to divide.

Keywords

Molecular Structure Special Reference Molecular Model Fundamental Problem Molecular Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam N. K. (1930). “The Physics and Chemistry of Surfaces”. Oxford.Google Scholar
  2. Astbury W. T. (1933). “Fundamentals of Fibre Structure”. Oxford.Google Scholar
  3. — (1933). “Some problems in the X-ray analysis of the Structure of Animal Hairs and other Protein Fibres”. Trans. Far. Soc.29, 193–205.Google Scholar
  4. — andDickinson, S. (1933). “Intramolecular Transformation of Myosin”. Nature135, 95.Google Scholar
  5. Astbury, W. T. andWoods, H. J. (1930). “The X-ray Interpretation of the Structure and Elastic Properties of Hair Keratin”. Nature126, 913.Google Scholar
  6. —— (1930). “The Molecular Structure of Textile Fibres”. J. Text. Inst.23, T. 17.Google Scholar
  7. —— (1933). “X-ray Studies of the Structure of Hair, Wool and related Fibres”. Phil. Trans. Rov. Soc, A.232, 333–394.Google Scholar
  8. Belling, J. (1928). “The ultimate Chromomeres ofLilium andAloe with regard to the number of Genes”. Univ. Calif. Pub. Bot.14, 307–318.Google Scholar
  9. — (1928). “Contraction of Chromosomes during Maturation Divisions inLilium and other Plants”. Univ. Calif. Pub. Bot.14, 335–343.Google Scholar
  10. Bernal, J. D. andCrowfoot, D. (1934). “X-ray Photographs of Crystalline Pepsin”. Nature133, 794–795.Google Scholar
  11. Bridges, C.B. (1935). “Salivary Chromosome Maps”. Journ. Hered.26, 60–64.Google Scholar
  12. Crowfoot, D. (1935). “X-ray Single Crystal Photographs of Insulin”. Nature135, 591–592.Google Scholar
  13. Darlington, C. D. (1932). “The Control of the Chromosomes by the Genotype and its Bearing on some Evolutionary Problems”. Amer. Nat.66, 25–51.Google Scholar
  14. - (1932). “Recent Advances in Cytology”. London.Google Scholar
  15. — (1933). “Meiosis inAgapanthus andKniphofia”. Cytologia4, 229–240.Google Scholar
  16. Fischer, E., Numerous papers from 1901 onwards. Z. physiol. Chem.Google Scholar
  17. - (1906). „Untersuchungen über Amino-Säuren, Polypeptide u. Proteine“. Berlin.Google Scholar
  18. Gowen, J. W. andGay, E. H. (1933). “Gene Number, Kind and Size inDrosophila”, Genetics18, 1–31.Google Scholar
  19. Gray, J. (1931). “Experimental Cytology”. Cambridge.Google Scholar
  20. Harris, L. J. (1930). “Zwitterions: Proof of the Zwitterion Constitution of the Ammo-Acid Molecule”. Biochem. J.24, 1080–1097.Google Scholar
  21. Hejtz, E. (1932). „Die Herkunft der Chromocentren“. Planta18, 571–639.Google Scholar
  22. — (1933). „Die somatische Heteropycnose beiDrosophila melanogaster und ihre genetische Bedeutung“. Z. Zellforsch. u. mikr. Anat.20, 237–287.Google Scholar
  23. Jeans, J. H. (1920). “The mathematical Theory of Electricity and Magnetism”. Fourth edition. Cambridge.Google Scholar
  24. Jennings, H. S. (1923). “The numerical relations in the crossing-over of the genes, with a critical examination of the theory that the genes are arranged in a linear series”. Genetics8, 393–457.Google Scholar
  25. Jordan Lloyd, D. (1926). “The Chemistry of the Proteins”. London.Google Scholar
  26. — (1932). “Colloidal Structure and its Biological Significance”. Biological Rev.7, 254–273.Google Scholar
  27. — (1933). “The Movements of Water in Living Organisms”. Biological Rev.8, 463–481.Google Scholar
  28. — (1933). “The Combination of Proteins with Acids and Bases”. J. Int. Soc. of Leather Trades' Chemists17, 245–258.Google Scholar
  29. — (1935). “The Proteins as Colloidal Electrolytes”. Trans. Faraday Soc.31, 317–324.Google Scholar
  30. — andPhillips, H. (1933). “Protein Structure and Protein Hydration”. Trans. Faraday Soc.29, 132–146.Google Scholar
  31. Kuwada, Y. (1927). “On the Spiral Structure of Chromosomes”. Bot. Mag. Tokyo41, 100–109.Google Scholar
  32. — andNakamura, T. (1933). “Behaviour of Chromonemata in Miosis”. I. Memoirs of College of Science, Kyoto9, 129–139.Google Scholar
  33. —— (1934). “Behaviour of Chromonemata in Mitosis”. II. Cytologia5, 244–247.Google Scholar
  34. —— (1934). “Behaviour of Chromonemata in Mitosis”. III. Memoirs of College of Science, Kyoto9, 343–366.Google Scholar
  35. Levene, P. A. andBass, L. W. (1932). “Nucleic Acids”. New York.Google Scholar
  36. Linderstrøm Lang, K. (1935). “Some Electrochemical Properties of a simple Protein”. Trans. Faraday. Soc.31, 324–335.Google Scholar
  37. Linderstrøm Lang, K. andRasmussen, K. E. (1935). Compt. Rend. Lab. Carlsberg20, No. 10, 1–35.Google Scholar
  38. Makino, K. (1935). „Über den Nucleinstoffwechsel“. Z. Physiol. Chem.232, 229–235.Google Scholar
  39. Metz, C. W. andGey, E.H. (1934). “Organization of Salivary Gland Chromosomes inSciara in relation to Genes”. Proceedings of the National Academy of Sciences20, 617–621.Google Scholar
  40. Meyer, K. H. andMark, H. (1930). „Der Aufbau der hochpolymeren organischen Naturstoffe“. Leipzig.Google Scholar
  41. Morgan, T. H., Bridges, C. B. andSchultz, J. (1934). “Report of Investigations on the constitution of the germinal material in relation to heredity”. Carnegie Institute of Washington Year Book33, 274–280.Google Scholar
  42. Muller, H. J. (1929). “The Gene as the Basis of Life”. Proceedings International Congress of Plant Sciences1, 897–921.Google Scholar
  43. — andProkofieva, A. (1934). “Continuity and Discontinuity of the Heredity Material”. Comptes Rendue de l'Academie des Sciences de l'U.R.S.S.4, 74–83.Google Scholar
  44. Painter, T. S. (1934). “Salivary Chromosomes and the Attack on the Gene”. Journal of Heredity25, 465–476.Google Scholar
  45. Parsons, T. R. (1935). “Fundamentals of Biochemistry”. Fifth edition. Cambridge.Google Scholar
  46. Reiss, P. (1926). “Le pH interieur cellulaire (Thèse pour le Doctorat en Médecine)”. Strasbourg.Google Scholar
  47. Sharp, L. W. (1934). “Introduction to Cytology”. Third Edition. New York.Google Scholar
  48. Shinke, N. (1934). “Spiral Structure of Chromosomes in Meiosis inSagittaria Aginashi”. Memoirs of College of Science, Kyoto, 367–392.Google Scholar
  49. Speakman, J. B. (1928). “The Plasticity of Wool”. Proc. Roy. Soc, B,103, 377–396.Google Scholar
  50. — (1931). “The Micelle Structure of the Wool Fibre”. Proc. Roy. Soc, A,132, 167–191.Google Scholar
  51. — andHirst, M. X. (1933). “The Constitution of the Keratin Molecule”. Trans. Faraday. Soc.29, 148–165.Google Scholar
  52. Sutton, W. S. (1903). “On the Morphology of the Chromosome-group inBrachystola magna”. Biological Bulletins4, 24–39.Google Scholar
  53. Thomson, J. J. (1921). “ The Elements of the Mathematical Theory of Electricity and Magnetism”. Fifth edition. Cambridge.Google Scholar
  54. White, M. J. D. (1933). “Tetraploid Spermatocytes in a Locust”. “Schistocerca gregaria”. Cytologia5, 135–139.Google Scholar
  55. Whitworth, W. A. (1901). “Choice and Chance”. Fifth edition. Cambridge.Google Scholar
  56. Wilson, E.B. (1928). “The Cell in Development and Heredity”. Third Edition. New York.Google Scholar
  57. Woodger, J. H. (1935). Unpublished work.Google Scholar
  58. Wrinch, D. M. (1934). “Chromosome Behaviour in Terms of Protein Pattern”. Nature134, 978.Google Scholar
  59. — (1935). “Contractile Factors of the Chromosome Micelle”. Nature135, 799.Google Scholar
  60. — (1935). “The Chromosome Micelle and the Banded Structure of Chromosomes in the Salivary Gland”. Nature136, 68.Google Scholar
  61. — (1935). “Chromosomes and molecular aggregates”. Proceedings of the International Congress of Botany. Amsterdam,2, 24–26.Google Scholar
  62. - (1935). “Contraction as a property of protein aggregates with special reference to the structure of chromosomes”. Proceedings of the International Congress of Physiology, Moscow 1935.Google Scholar

Copyright information

© Verlag von Gebrüder Borntraeger 1936

Authors and Affiliations

  • D. M. Wrinch
    • 1
  1. 1.Oxford UniversityEngland

Personalised recommendations