Some remarks ons-convex functions

Summary

Two kinds ofs-convexity (0 <s ≤ 1) are discussed. It is proved among others thats-convexity in the second sense is essentially stronger than thes-convexity in the first, original, sense whenever 0 <s < 1. Some properties ofs-convex functions in both senses are considered and various examples and counterexamples are given.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Breckner, W. W.,Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. Publ. Inst. Math.23 (1978), 13–20.

    Google Scholar 

  2. [2]

    Matuszewska, W. andOrlicz, W.,A note on the theory of s-normed spaces of ϕ-integrable functions. Studia Math.21 (1961), 107–115.

    Google Scholar 

  3. [3]

    Musielak, J.,Orlicz spaces and modular spaces. [Lecture Notes in Math. Vol. 1034]. Springer-Verlag, Berlin, 1983.

    Google Scholar 

  4. [4]

    Orlicz, W.,A note on modular spaces. I. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys.9 (1961), 157–162.

    Google Scholar 

  5. [5]

    Rolewicz, S.,Metric linear spaces, 2nd Ed. PWN, Warszawa, 1984.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hudzik, H., Maligranda, L. Some remarks ons-convex functions. Aeq. Math. 48, 100–111 (1994). https://doi.org/10.1007/BF01837981

Download citation

AMS (1991) subject classification

  • 26A51