Studia Logica

, Volume 40, Issue 1, pp 39–54 | Cite as

On fragments of Medvedev's logic

  • Miros>law Szatkowski


Medvedev's intermediate logic (MV) can be defined by means of Kripke semantics as the family of Kripke frames given by finite Boolean algebras without units as partially ordered sets. The aim of this paper is to present a proof of the theorem: For every set of connectivesΦ such that\(\{ \to , \vee , \urcorner \} \not \subseteq \Phi \subseteq \{ \to , \wedge , \urcorner \} \) theΦ-fragment ofMV equals theΦ fragment of intuitionistic logic. The final part of the paper brings the negative solution to the problem set forth by T. Hosoi and H. Ono, namely: is an intermediate logic based on the axiom (⌝a→b∨c) →(⌉a→b)∨(⌝a → c) separable?


Mathematical Logic Boolean Algebra Computational Linguistic Final Part Intuitionistic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Crawley andR. P. Dilworth,Algebraic theory of lattices, Prentice-Hall, INC. Englewood Cliffs, New Jersey 1973.Google Scholar
  2. [2]
    M. C. Fitting,Intuitionistic Logic, Modal Theory and Forcing, North-Holland, Amsterdam 1969.Google Scholar
  3. [3]
    D. M. Gabbay,The decidability of the Kreisel-Putnam system,The Journal of Symbolic Logic 35 (1970), pp. 431–437.Google Scholar
  4. [4]
    A. Grzegorczyk,Some relational systems and the associated topological spaces,Fundamenta Mathematicae 60 (1967), pp. 223–231.Google Scholar
  5. [5]
    T. Hosoi andH. Ono,Intermediate propositional logics (A survey),Journal of Tsuda College 5 (1973), pp. 67–82.Google Scholar
  6. [6]
    V. A. Jankov,Some superconstructive propositional calculi,Doklady Akademii Nauk SSSR 151 (1963), pp. 796–797Soviet Mathematics Doklady 4 (1963), pp. 1103–1105.Google Scholar
  7. [7]
    —,The calculus of the “law of excluded middle”,Izviestija AkademiiNauk SSSR. 32 (1968), pp. 1044–1051Mathematics USSR — Izvestija 2 (1968), pp.997–1004.Google Scholar
  8. [8]
    S. Jaśkowski,Recherches sur le systéme de la logique intuitioniste,Actualités: Scientifiques et Industrielles 393 (1936), pp. 58–61.Google Scholar
  9. [9]
    D. H. J. de Jongh andA. S. Troelstra,On the connection of partially ordered sets with some pseudo-Boolean algebras,Indagationes Mathematicae 28 (1966), pp. 317–329.Google Scholar
  10. [10]
    L. L. Maksimova, Skvorcov D. P. andV. B. Šehtman,Neyozmožnost' konečnoi aksiomatizacii logiki finitnyh zadač Medvedeva,Doklady Akademii Nauk SSSR 245 (1979), pp. 1051–1054.Google Scholar
  11. [11]
    C. G. McKay,A note on the Jaśkowski sequence,Zeitschrift für mathematische Logik und Grundlagen der Mathematik 13 (1967), pp. 95–96.Google Scholar
  12. [12]
    T. J. Medvedev,Interpretacija logičeskih formul posredstvom finitnyh zadač i svjaz' ee s teoriei realizuemosti,Doklady Akademii Nauk SSSR 148 (1963), pp. 771–774.Google Scholar
  13. [13]
    —,Finitnye zadači,Doklady Akademii Nauk SSSR 142 (1962), pp. 1015–1018.Google Scholar
  14. [14]
    H. Ono,Kripke models and intermediate logics,Publications of the Research Institute for Mathematical Sciences 6 (1970–71), pp. 461–476.Google Scholar
  15. [15]
    H. Rasiowa andR. Sikorski,The Metamathematics of Mathematics PWN Warszawa 1970.Google Scholar
  16. [16]
    K. Segerberg,Proof of conjecture of McKay,Fundamenta Mathematicae 81 (1974), pp. 267–270.Google Scholar
  17. [17]
    D. P. Skvorcov,O realizuemosti i finitnoi obščeznačimosti propozicionalnyh formul s ograničenijami na vhoždenija implikacii,Matematičeskie Zametki 25 (1979), pp. 919–931.Google Scholar
  18. [18]
    —,O vhoždenii implikacii v finitno obščeznačimye intuicionistski nedokazuemye formuly logiki vyskazyvanii,Matematičeskie Zametki 20 (1976), pp. 383–390.Google Scholar
  19. [19]
    C. Smoryński,Investigations of the intuitionistic formal systems by means of Kripke models. Doctoral dissertation, Stanford University 1972.Google Scholar
  20. [20]
    A. S. Troelstra,On intermediate propositional logics,Indagationes Mathematicae 27 (1965), pp. 141–152.Google Scholar
  21. [21]
    T. Umezawa,Über Zwischensysteme der Aussagenlogik,Nagoya Mathematic Journal 9 (1955), pp. 181–189.Google Scholar

Copyright information

© Kluwer Academic Publishers 1981

Authors and Affiliations

  • Miros>law Szatkowski
    • 1
  1. 1.Jagiellohian UniversityCracow

Personalised recommendations