Archive for Rational Mechanics and Analysis

, Volume 119, Issue 4, pp 355–391 | Cite as

On steady distributions of self-attracting clusters under friction and fluctuations

  • G. Wolansky


We consider the Vlasov-Fokker-Planek equation with a Newtonian, attracting potential and study its stationary solutions, given by the generalized Lane-Emden equation. In a two-dimensional domain we obtain the existence of a critical mass beyond which the system may admit a gravitational collapse. For a one-dimensional model we prove some results on existence, uniqueness, stability and symmetry-breaking of stationary solutions.


Neural Network Complex System Nonlinear Dynamics Stationary Solution Electromagnetism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R. A.:Sobolev Spaces, Academic Press (1975).Google Scholar
  2. 2.
    Aubin, J. P. &Ekeland, I.:Applied Nonlinear Analysis, Wiley (1984).Google Scholar
  3. 3.
    Bavaud, F.: Equilibrium properties of the Vlasov functional: The generalized Poisson-Boltzmann-Emden equation, preprint (1990).Google Scholar
  4. 4.
    Benilan, P., Brezis, H. &Crandall, M. G.: A semilinear equation inL 1(ℝN),Ann. Sc. Norm. Sup., Pisa,2, 523–555 (1975).Google Scholar
  5. 5.
    Braun, W. &Hepp, K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles,Comm. Math. Phys.,56, 101–113 (1977).Google Scholar
  6. 6.
    Brunovsky, P. &Fiedler, B.: Connecting orbits in slow reaction diffusion equations, in Dynamics Reports,1, 57–90 (1988).Google Scholar
  7. 7.
    Fusco, G. &Hale, J. K.: Slow motion manifolds, Dormant instability and singular perturbations,J. Dynamics Diff. Eqs.,1, 75–94 (1989).Google Scholar
  8. 8.
    Gardiner, C. W.:Handbook of Stochastic Methods, Springer-Verlag (1983).Google Scholar
  9. 9.
    de Groot, S. R. &Mazur, P.:Non-Equilibrium Thermodynamics, Dover (1984).Google Scholar
  10. 10.
    Henry, D.:Geometric Theory of Semilinear Parabolic Equations, Springer Lecture Notes in Math.,840 (1981).Google Scholar
  11. 11.
    Kazdan, J. L. &Warner, F. W.: Curvature functions for compact 2-manifolds,Ann. Math.,99, 14–47 (1974).Google Scholar
  12. 12.
    McOwen, R. C.: Conformai metrics in ℝ2 with prescribed Gaussian curvature and positive total curvature,Ind. Univ. Math. J.,34, 97–104 (1985).Google Scholar
  13. 13.
    Moser, J.: A sharp form of an inequality by N. Trudinger,Ind. Univ. Math. J.,20, 1077–1092 (1971).Google Scholar
  14. 14.
    Nelson, E.:Dynamical Theory of Brawnian Motion, Princeton Univ. Press, (1967).Google Scholar
  15. 15.
    Neunzert, H.: Mathematical investigations of particle in cell methods,Fluid Dyn. Trans. 9, 229–254 (1978).Google Scholar
  16. 16.
    Reed, M. &Simon, B.:Methods of Modern Mathematical Physics, Vols. II and IV, Academic Press (1972).Google Scholar
  17. 17.
    Sphon, H.: Kinetic equations from Hamiltonian dynamics,Rev. Mod. Phys. 53, 569–615 (1980).Google Scholar
  18. 18.
    Wolansky, G.: On the evolution of self-interacting clusters with applications to semi-linear equations of exponential nonlinearity,J. d'Analyse, to appear.Google Scholar
  19. 19.
    Wolansky, G.: On the slow manifold of quasi-stationary shock waves,J. Diff. Eq. Dyn. Sys., to appear.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • G. Wolansky
    • 1
  1. 1.Department of Mathematics TechnionIsrael Institute of TechnologyHaifaIsrael

Personalised recommendations