Skip to main content
Log in

Proton magnetic resonance spectroscopic studies of proteins containing deuterated tryptophan residues

  • General and Review Articles
  • b. review articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The deuteration of the tryptophan residues of hen egg white lysozyme, bovineα-lactalbumin and bovineβ-lactoglobulin in d-TFA has been studied by PMR spectroscopy. It is found that short times of exposure to d-TFA allow selective deuteration at the C-2 position with only a small amount of deuteration at the C-5 position, as expected from studies on model peptides described in the previous paper. The proteins studied essentially regained their native structures after the treatment, except for broadening and shifting of the histidine resonances in the case ofα-lactalbumin. Selective deuteration at the tryptophan C-2 position was readily observed by difference spectroscopy of the denatured protein, but PMR difference spectra of the same proteins in benign solvents did not contain resonances from all of the exchanged protons. Some resonances could not be observed because of line broadening, which causes the resonances to fall below the limit of sensitivity of detection at 100 MHz. Deuteration by brief exposure to d-TFA should be useful for the identification of tryptophan resonances in the PMR spectra of native proteins.

The deuteration of all the aromatic protons of tryptophan residues in proteins by immersion in d-TFA for 4 hours at room temperature was studied. This technique is unlikely to be of general use for the simplification of the aromatic region of the PMR spectra of native proteins because of the degradation of tryptophan residues which results from the acid treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Norton, R. S. and Bradbury, J. H., 1976. Mol. Cell. Biochem. preceding paper in this issue.

  2. Bak, B., Led, J. J. and Pedersen, E. J., 1969. Acta Chem. Scand. 23, 3051–3054.

    PubMed  Google Scholar 

  3. Bak, B., Led, J. J. and Pedersen, E. J., 1969. J. Mol. Spect. 32, 151–156.

    Google Scholar 

  4. Holt, L. A., Milligan, B. and Rivett, D. E., 1971. Biochemistry 10, 3559–3564.

    PubMed  Google Scholar 

  5. Holt, L. A. and Milligan, B., 1973. Aust. J. Biol. Sci. 26, 871–876.

    PubMed  Google Scholar 

  6. King, N. L. R. and Bradbury, J. H., 1971. Nature 229, 404–406.

    PubMed  Google Scholar 

  7. Bradbury, J. H. and King, N. L. R., 1971. Aust. J. Chem. 24, 1703–1714.

    Google Scholar 

  8. Barman, T. E., 1970. Biochim. Biophys. Acta 214, 242–244.

    PubMed  Google Scholar 

  9. Shugar, D., 1952. Biochim. Biophys. Acta 8, 302–309.

    PubMed  Google Scholar 

  10. Bradbury, J. H. and Norton, R. S., 1975. Eur. J. Biochem. 53, 387–396.

    PubMed  Google Scholar 

  11. Marier, J. R. and Rose, D., 1964. Anal. Biochem 7, 304–314.

    Google Scholar 

  12. McDonald, C. C. and Phillips, W. D., 1967. J. Amer. Chem. Soc. 89, 6332–6341.

    Google Scholar 

  13. Sternlicht, H. and Wilson, D., 1967. Biochemistry 6, 2881–2892.

    PubMed  Google Scholar 

  14. Bradbury, J. H. and Norton, R. S., 1974. Int. J. Peptide Protein Res. 6, 295–302.

    Google Scholar 

  15. Campbell, I. D., Dobson, C. M., Williams, R. J. P. and Xavier, A. V., 1973. Ann. N.Y. Acad. Sci. 222, 163–174.

    PubMed  Google Scholar 

  16. Bradbury, J. H. and Brown, L. R., 1973. Eur. J. Biochem. 40, 565–576.

    PubMed  Google Scholar 

  17. Campbell, I. D., Dobson, C. M., and Williams, R. J. P., 1975. Proc. Roy. Soc. Lond. B 189, 485–502.

    Google Scholar 

  18. Norton, R. S., Ph.D. Thesis, Australian National University, 1974.

  19. Hayashi, K., Imoto, T., Funatsu, G., and Funatsu, M., 1965. J Biochem. (Tokyo) 58, 227–235.

    Google Scholar 

  20. Oldfield, E., Norton, R. S. and Allerhand, A., 1975. J. Biol. Chem. 250, 6381–6402.

    PubMed  Google Scholar 

  21. Cohen, J. S. and Jardetzky, O., 1968. Proc. Natl. Acad. Sci. U.S.A. 60, 92–99.

    PubMed  Google Scholar 

  22. Imoto, T., Johnson, L. N., North, A. C. T., Phillips, D. C. and Rupley, J. A., 1972. in “The Enzymes“ (Boyer, P. D., ed.) Vol. VII, 3rd ed., pp. 665–868, Academic Press, New York.

    Google Scholar 

  23. Brew, K., Castellino, F. J., Vanaman, T. C. and Hill, R. L., 1970. J. Biol. Chem. 245, 4570–4582.

    PubMed  Google Scholar 

  24. Bradbury, J. H. and King, N. L. R., 1969. Aust. J. Chem. 22, 1083–1089.

    Google Scholar 

  25. McKenzie, H. A. and Sawyer, W. H., 1967. Nature 214, 1101–1104.

    PubMed  Google Scholar 

  26. Timasheff, S. N., Townend, R., and Mescanti, L., 1966. J. Biol. Chem. 241, 1863–1870.

    PubMed  Google Scholar 

  27. Uphaus, R. A., Grossweiner, L. I., Katz, J. J. and Kopple, K. D., 1959. Science 129, 641–643.

    PubMed  Google Scholar 

  28. Bradbury, J. H., 1973. Adv. Prot. Chem. 27, 111–211.

    Google Scholar 

  29. Tanford, C., 1968. Adv. Prot. Chem. 23, 121–282.

    Google Scholar 

  30. Bradbury, J. H., Chapman, B. E. and King, N. L. R., 1971. Int. J. Protein Res. 3, 351–356.

    PubMed  Google Scholar 

  31. Kubo, R. and Tomita, K., 1954. J. Phys. Soc. Japan 9, 888–919.

    Google Scholar 

  32. Glickson, J. D., Phillips, W. D. and Rupley, J. A., 1971. J. Amer. Chem. Soc. 93, 4031–4038.

    Google Scholar 

  33. Dubin, S. B., Clark, N. A. and Benedek, G. B., 1971. J. Chem. Phys. 54, 5158–5164.

    Google Scholar 

  34. Cozzone, P. J., Opella, S. J., Jardetzky, O., Berthou, J. and Jolles, P., 1975. Proc. Natl. Acad. Sci., U.S. 72, 2095–2098.

    Google Scholar 

  35. Wilbur, D. J., Norton, R. S., Clouse, A. O., Addleman, R. and Allerhand, A., 1976. J. Amer. Chem. Soc., in press.

  36. Rawitch, A. B., 1972. Arch. Biochem. Biophys. 151, 22–27.

    PubMed  Google Scholar 

  37. Townend, R., Herskovits, T. T., Timasheff, S. N. and Gorbunoff, M. J., 1969. Arch. Biochem. Biophys. 129, 567–580.

    PubMed  Google Scholar 

  38. Seibles, T. S., 1969. Biochemistry 8, 2949–2954.

    PubMed  Google Scholar 

  39. Campbell, I. D., Dobson, C. M., Williams, R. J. P. and Xavier, A. V., 1973. J. Magn. Res. 11, 172–181.

    Google Scholar 

  40. Campbell, I. D., Dobson, C. M. and Williams, R. J. P., 1974. J. Chem. Soc. (Chem. Commun.) 888–889.

  41. Campbell, I. D., Dobson, C. M., Williams, R. J. P. and Wright, P. E., 1975. F.E.B.S. Letters 57, 96–99.

    Google Scholar 

  42. Campbell, I. D., Dobson, C. M. and Williams, R. J. P., 1975. Proc. Roy. Soc. Lond. B 189, 503–509.

    Google Scholar 

  43. Campbell, I. D., Dobson, C. M. and Williams, R. J. P., 1975. Proc. Roy. Soc. Lond. A 345, 41–59.

    Google Scholar 

  44. Dobson, C. M., Moore, G. R., and Williams, R. J. P., 1975. F.E.B.S. Letters 51, 60–65.

    Google Scholar 

  45. Bradbury, J. H. and Norton, R. S., 1973. Biochim. Biophys. Acta 328, 10–19.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An invited article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradbury, J.H., Norton, R.S. Proton magnetic resonance spectroscopic studies of proteins containing deuterated tryptophan residues. Mol Cell Biochem 13, 113–125 (1976). https://doi.org/10.1007/BF01837061

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01837061

Keywords

Navigation