aequationes mathematicae

, Volume 12, Issue 2–3, pp 232–241 | Cite as

Sufficiency conditions under which a lagrangian is an ordinary divergence

  • Gregory Walter Horndeski
Research Papers

Abstract

An expression is derived for the variation of Lagrangians which are such that the set of admissible variables of variation is star-shaped. If such a Lagrangian leads to identically vanishing Euler-Lagrange expressions then it is shown that under suitable circumstances the Lagrangian in question must be an ordinary divergence. Furthermore, an expression is given for the ‘vector’ field which appears in this ordinary divergence.

AMS Primary Subject Classification

49H05 

Secondary Subject Classifications

53A99 70D10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Buchdahl, H. A.,On the Nonexistence of a Class of Static Einstein Spaces Asymptotic at Infinity to a Space of Constant Curvature, J. Math. Phys.1, 537–541 (1960).Google Scholar
  2. [2]
    Buchdahl, H. A.,On Functionally Constant Invariants of the Riemann Tensor, Proc. Cambridge Phil. Soc.68, 179–185 (1970).Google Scholar
  3. [3]
    Funk, P.,Variationsrechnung und ihre Anwendung in Physik und Technik (Springer, Berlin-Göttingen-Heidelberg, 1962).Google Scholar
  4. [4]
    Horndeski, G. W.,Dimensionally Dependent Divergences, Proc. Cambridge Phil. Soc.72, 77–82 (1972).Google Scholar
  5. [5]
    Horndeski, G. W.,Dimensionally Dependent Divergences and Local Parallelizations, Tensor21, 83–90 (1973).Google Scholar
  6. [6]
    Königsberger, L.,Die Principien der Mechanik für mehrere unabhängige Variable, J. Reine Angew. Math.124, 202–277 (1902).Google Scholar
  7. [7]
    Lovelock, D.,The Euler-Lagrange Expression and Degenerate Lagrange Densities, J. Austral. Math. Soc.14 (4), 482–495 (1972).Google Scholar
  8. [8]
    Rund, H.,Integral Formulae Associated with the Euler-Lagrange Operators of Multiple Integral Problems in the Calculus of Variations Aequationes Math.11, 212–229 (1974).Google Scholar

Copyright information

© Birkhäuser Verlag 1975

Authors and Affiliations

  • Gregory Walter Horndeski
    • 1
  1. 1.University of WaterlooWaterlooCanada

Personalised recommendations