aequationes mathematicae

, Volume 12, Issue 2–3, pp 152–155 | Cite as

Comparisons between best polynomial approximations and interpolating polynomials

  • Lee W. Johnson
Research Papers

AMS Primary Subject Classifications

41A05 41A50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Berstein, S. N.,Quelques remarques sur l'interpolation, Krakov, Comm. Math. Assoc., 1916.Google Scholar
  2. [2]
    Clenshaw, C. W.,A Comparison of Best Polynomial Approximations with Truncated Chebyshev Series Expansions, SIAM J. Numer. Anal.1, 26–37 (1964).Google Scholar
  3. [3]
    Clenshaw, C. W. andHayes, J. G.,Curve and Surface Fitting, J. Inst. Math. Appl.1, 164–172 (1965).Google Scholar
  4. [4]
    Lebesgue, H.,Sur les integrales singulières, Ann. de Toulouse1, 25–117 (1909).Google Scholar
  5. [5]
    Mason, J. C.,Orthogonal Polynomial Approximation Methods in Numerical Analysis [Approximation Theory], A. Talbot, Ed., Academic Press, London, 1970.Google Scholar
  6. [6]
    Powell, M. J. D.,On the Maximum Errors of Polynomial Approximations Defined by Interpolation and by Least Squares Criteria, Comput. J.9, 404–407 (1967).Google Scholar
  7. [7]
    Rivlin, T. J.,Chebyshev Expansions and Best Uniform Approximation, IBM Research Report R2-93 (1962).Google Scholar
  8. [8]
    Shampine, L. F.,Efficiency of a Procedure for Near-minimax Approximation, J. Assoc. Comput. Mach.17, 655–660 (1970).Google Scholar
  9. [9]
    Natanson, I. P.,Constructive Function Theory, Ungar, New York, 1965.Google Scholar

Copyright information

© Birkhäuser Verlag 1975

Authors and Affiliations

  • Lee W. Johnson
    • 1
  1. 1.Virginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations