This is a preview of subscription content, access via your institution.
References
Anastassiadis, J,Une propriete de la fonction gamma Bull Sci Math (2)81 (1957), 116–118
Artin, E,The gamma function Holt, Rinehard and Winston, 1964 English translation by M Butler of “Einfuhrung in die Theorie der Gammafunktion”, Hamb Math Einzelschr 11, Verlag B G Teuber, 1931
Bellman, R,Introduction to matrix analysis 2nd Ed, McGraw-Hill, 1970
Bohr, H andMollerup, J,Loerebog i matematisk analyse III Graenseprocessor Købenavn, 1922, pp 149–164
Buchheim, A,An extension of a theorem of Professor Sylvester relating to matrices Philos Mag (5),22 (1886), 173–174
Carlson, B C,Special functions of applied mathematics Acad Press, 1977
Cipolla, M,Sulle matrice expressions analitiche di un altra Rend Circ Mat Palermo56 (1932), 144–154
Coddington, E A andLevinson, N,Theory of ordinary differential equations McGraw-Hill, 1955
Copson, E T,An introduction to the theory of functions of a complex variable Oxford, 1960
Courant, R andJohn, F,Introduction to calculus and analysis, Vol 2 J Wiley & Sons, 1974
Curtis, C W,Linear algebra Allyn & Bacon, 1965
Dunford, N andSchwartz, J T,Linear operators part I General Theory, Interscience, 1966
Evard, J C,On matrix functions which commute with their derivative Linear Algebra Appl68 (1985), 145–178
Fantappe, L,Le calcul des matrices C R Acad Sci Paris186 (198), 619–621
Finkbeiner, D T,Introduction of matrices and linear transformations Freeman, 1960
Frobenius, G,Uber die cogredienten Transformationen der biblinearen Formen Sitzungsber Preuss Akad Wiss Berlin, 1986, pp 7 16
Giorgi, G,Nuove osservazioni sulle funzioni delle matrici Atti Acad Naz Lincei Rend Cl Sci Fis Mat Natur (6)8 (1928), 3–8
Goldberg, J L andSchwartz, A J,Systems of ordinary differential equations an introduction Harper & Row, 1972
Hensel, K,Über Potenzreihen von Matrizen J Reine Angew Math 155 (1926), 107–110
Hoffman, K andKunze, R,Linear algebra 2nd Ed, Prentice Hall, 1971
Jacobsen, N,Lectures in abstract algebra, II, Linear Algebra Springer-Verlag, 1975
Kairies, Hans-Heinrich,Zur axiomatischen Charakterisierung der Gammafunktion J Reine Agnew Math236 (1969), 103–111
Kairies, Hans-Heinrich,Convexity in the theory of the gamma function General inequalities, I (Proc First Internat Conf Math Res Inst, Oberwolfach, 1976), pp 49–62, Birkhauser, Basel, 1978
Kuczma, M,Functional equations in a single variable PWN-Polish Sci Pub, 1968
Laguerre, E N,Sur le calcul des systemes lineares, 1867 Reprinted in Oeuvres, t 1, 1898, 221 267
Lebedev, N N,Special functions and their applications Prentice-Hall Inc, 1965
Lucht, L,Zur Charakterisierung der Gamma Funktion J Reine Agnew Math288 (1976), 77–85
MacDuffee, C C,The theory of matrices Chelsea, 1946
Mal'cev, A I,Foundations of linear algebra (English translation) Freeman, 1963
Marcus, M andMinc, H,A survey of matrix theory and matrix inequalities Allyn Bacon, 1964
Muldoon, M E,Some monotonicity properties and characterizations of the gamma function Aequationes Math18 (1978), 54–63
Mutafian, C,Les applications lineaires Vuibert, 1979
Noble, B andDaniel, J W,Applied linear algebra, 2nd Ed Prentice-Hall, 1977
Pease, M C,Methods of matrix algebra Academic Press, 1965
Poincaré, H,Sur les groupes continus Proc Cambridge Philos Soc 18, 1899, 220–255 Reprinted in Oeuvres 3, 173–212
Pullman, N J,Matrix theory and its applications Dekker, 1976
Richter, H,Über Matrixfunktionen Math Ann122 (1950), 16–34
Rinehart, R F,The equivalence of definitions of a matrix function Amer Math Monthly62 (1955), 395–414
Saaty, T,Modern nonlinear equations McGraw-Hill, 1967
Schwerdtfeger, H,Les Fonctiones des Matrices I, Les Fonctiones Univalentes Actualites Sci Indust No 649, Paris, Herman, 1938
Spain, B andSmith, M G,Functions of mathematical physics Van Nostrand Reinhold, 1970
Strang, G,Linear algebra and its applications, 2nd Ed Academic Press, 1980
Sylvester, J J,On the equation to the secular inequalities in the planetary theory Philos-Mag16 (1883), 267–269 Reprinted in Collected Papers4, 110–111
Sylvester, J J,Sur les puissances et les racines de substitutions linearies C R Acad Sci Paris94 (1882), 55–59 Reprinted in Collected Papers 3, 562 564
Weyr, E,Note sur la theorie de quantites complexes formées avec n unites principales Bull Sci Math (2)11 (1887), 205–215
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Heuvers, K.J., Moak, D. Matrix solutions of the functional equation of the gamma function. Aeq. Math. 33, 1–17 (1987). https://doi.org/10.1007/BF01836147
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF01836147
AMS (1980) subject classification
- Primary 39A35, 33A15, 39A05