Advertisement

Biological Cybernetics

, Volume 41, Issue 1, pp 19–32 | Cite as

Simulation of head movement trajectories: model and fit to main sequence

  • W. H. Zangemeister
  • S. Lehman
  • L. Stark
Article

Abstract

A sixth order nonlinear model for horizontal head rotations in humans is presented and investigated using experimental results on head movement trajectories and neck muscle EMG. The controller signals, structured in accordance with time optimal control theory, are parameterized, and controller signal parameter variations show a dominating influence on different aspects of the head movement trajectory. The model fits the common head acceleration types over a wide range of amplitudes, and also less common (dynamic overshoot) trajectories.

Keywords

Control Theory Nonlinear Model Signal Parameter Main Sequence Head Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, V.: The physiology of neck muscles; their role in head movement and maintenance of posture. Can. J. Phys.55, 332–338 (1975)Google Scholar
  2. Bahill, T., Clark, M., Stark, L.: Dynamic overshoot in saccadic eye movements is caused by neurological control signal reversals. Exp. Neurol.48, 107–122 (1975)PubMedGoogle Scholar
  3. Bahill, T., Clark, M., Stark, L.: Glissades — eye movements generated by mismatched components of the saccadic motoneuronal control signal. Math. Biosci.26, 303–318 (1975)Google Scholar
  4. Bellman, R.: Dynamic programming. Princeton: Princeton University Press 1957Google Scholar
  5. Bizzi, E., Kalii, R., Tagliasco, V.: Eye-head coordination in monkeys: evidence for centrally patterned organization. Science 173, 452–454 (1971)Google Scholar
  6. Bizzi, E., Dev, P., Morasso, P., Polit, A.: Effects of load distrubances during centrally initiated movements. J. Neurophysiol.41, 542–556 (1978)PubMedGoogle Scholar
  7. Bock, O., Zangemeister, W.H.: A mathematical model of air and water caloric nystagmus. Biol. Cybern.31, 91–95 (1978)PubMedGoogle Scholar
  8. Bogumil, R.: Sensitivity analysis of biosystem models. 62nd ann. meeting Fed. Am. Soc. Exp. Biol., Fed. Proc.39, 97–103 (1980)Google Scholar
  9. Bremermann, H.: A Method of Unconstrained Global Optimization. Math. Biosci.9, 1–15, (1970)Google Scholar
  10. Clark, M., Jury, E., Krishnan, V., Stark, I.: Computer simulation of biological models using the inners approach. Comput. Programs Biomed5, 263–282 (1975)Google Scholar
  11. Clark, M., Stark, I.: Time optimal behavior of human saccadic eye movement. IEEE Trans. Autom. Control20, 345–348 (1975)Google Scholar
  12. Clark, M., Stark, I.: Sensitivity of control parameters in a Xodel saccadic eye tracking and estimation of resultant nervous activity. Bull. Math. Biol.38, 39–57 (1976)PubMedGoogle Scholar
  13. Cook, J., Stark, I.: The human eye movement mechanism: experiments, modelling and model testing. Albrecht von Graefes Arch. Ophthalmol.79, 428–436 (1968)Google Scholar
  14. Cooper, S., Daniel, P.: Muscle spindles in human extrinsic eye muscles. Brain Res.72, 1–20 (1949)Google Scholar
  15. Dichgans, J., Bizzi, E., Morasso, P., Tagliasco, V.: The role of vestibular and neck afferents during eye head coordination in the monkey. Brain Res.71, 225–232 (1974)PubMedGoogle Scholar
  16. Feldbaum, A.: Optimal control system. Trans. from russian Krafman, A. New York: Academic Press 1965Google Scholar
  17. Fitzlugh, R.: A model of optimal voluntary muscular control. J. Math. Biol.4, 203–236 (1977)PubMedGoogle Scholar
  18. Fuchs, A., Luschei, E.: Firing patterns of abducens neurons of alert monkeys in relationship to horizontal eye movements. J. Neuphysiol.33, 382–392 (1970)Google Scholar
  19. Henn, V., Cohen, B.: Activity in eye muscle motoneurons during saccadic eye movements and positions of fixation. J. Neurophysiol.36, 115–126 (1973)PubMedGoogle Scholar
  20. Hennemann, E., Somjen, G., Carpenter, D.: Excitability and inhibitibility of motoneurons of different sizes. J. Neurophysiol.28, 599–620 (1965)PubMedGoogle Scholar
  21. Hsu, F., Bahill, T., Stark, L.: Parametric sensitivity analysis of a homeomorphic model for saccadic and vergence eye movements. Comp. Progr. Biomed.6, 108–116 (1976)Google Scholar
  22. Intrilligator, M.: Mathematical optimization and economic theory. Englewood Cliffs: Prentice Hall 1971Google Scholar
  23. Lehman, S., Stark, I.: Simulation of linear and nonlinear eye movement models: Sensitivity analysis and enumeration studies of time optimal control. Cybernetics (in press) (1980)Google Scholar
  24. Meiry, J.: Vestibular and proprioceptive stabilization of eye movements. In: The control of eye movements. In: Bach-y-Rita, P., Collins, C.C. (eds.) pp. 483–496. New York, London: Academic Press 1971Google Scholar
  25. Morasso, P., Sandini, G., Tagliasco, R.: Control strategies in the eye-head coordination system. IEEE Trans. Sys. Man and Cybern. SMC7, 639–647 (1977)Google Scholar
  26. Peterson, W.: Reticulospinal projections to spinal motor nuclei. Ann. Rev. Physiol.41, 127–140 (1979)Google Scholar
  27. Pontryagin, L., Boltyanskii, V., Camkrendze, R., Mischenko, E.: The mathematical theory of optimal processes. Transl. Trigoroff. K.N. New York: Interscience Publication, Wiley 1962Google Scholar
  28. Raphan, T., Cohen, B., Matsuo, V.: A velocity-storage mechanism responsible for optokinetic nystagmus (OKN), OKAN and vestibular nystagmus. In: Neuroscience. Control of gaze by brainstem neurons. Baker, R., Berthoz, A. Vol. 1, pp. 37–47, 1977Google Scholar
  29. Reber, J., Goldsmith, W.: Analysis of large head-neck motions. J. Biomechan.12, 211–222 (1979)Google Scholar
  30. Robinson, D.A.: The mechanics of human saccadic eye movement. J. Physiol.174, 245–264 (1964)PubMedGoogle Scholar
  31. Rosen, R.: Optimality principles in biology. New York: Plenum Press 1967Google Scholar
  32. Selhorst, J., Stark, L., Ochs, A., Hoyt, W.: Disorders in cerebellar ocular motor control. I. Saccadic overshoot dysmetria. An oculographic, control system, and clinico-anatomical analysis. Brain99, 497–508 (1977)Google Scholar
  33. Shirachi, D., Monk, D., Black, J.: Head rotational spectral characteristics during two-dimensional smooth pursuit tasks. IEEE Trans. Sys. Man Cybern.8, 715–722 (1978)Google Scholar
  34. Smith, O.J.M.: Nonlinear computation in the human controller. IRE Trans. Bio-Med. Electron. BME9, 125–128 (1962)Google Scholar
  35. Stark, L.: Neurological Control Systems. Plenum Press, N.Y. 1968Google Scholar
  36. Sugie, N., Wakakuwa, M.: Visual target tracking with active head rotation. IEEE Trans. Sys. Sci. Cybern.6, 103–109 (1970)Google Scholar
  37. Tomovic, R., Vukobratovic, M.: General sensitivity theory. New York, American Elsevier, 1972Google Scholar
  38. Viviani, P., Berthoz, A.: Dynamics of head-neck system in response to small perturbations: analysis and modelling in the frequency domain. Biol. Cybern.19, 19–37 (1975)PubMedGoogle Scholar
  39. Walker, L., Harris, E., Pontius, U.: Mass, volume, center of mass, and mass moment of inertia of head and head and neck of human body. Proc. 17th STAPP Car Crash Conference: 525–537, SAE (ed.). New York: 1973Google Scholar
  40. Westheimer, G.: Mechanism of saccadic eye movements. AMA Arch. Ophthalm.52, 710–724 (1954)Google Scholar
  41. Young, L., Stark, L.: Variable feedback experiments testing a sampled data model for eye tracking movements. IEE Trans. Hum. Fac. Electron. HFE4, 38–51 (1963)Google Scholar
  42. Young, L.: The current status of vestibular system models. Automatica5, 369–383 (1969)Google Scholar
  43. Zangemeister, W.H., Jones, A., Stark, L.: Dynamics of head movement trajectories: main sequence relationship. Exp. Neurol.71: 76–91 (1981)PubMedGoogle Scholar
  44. Zangemeister, W.H., Meienberg, O., Stark, L., Hoyt, W.: Eye-head coordination in homonymous hemianopia. submitted (1981)Google Scholar
  45. Zangemeister, W.H., Stark, L., Meienberg, O., Waite, T.: Neurological control of head rotation: electromyographic evidence (submitted) (1980)Google Scholar
  46. Zangemeister, W.H., Bock, O.: The influence of pneumatization of mastoid bone on caloric nystagmus response. Acta Otolaryngol.88, 105–109 (1979)PubMedGoogle Scholar
  47. Zee, D., Optican, L., Cook, J., Robinson, D.A., Engel, W.: Slow saccades in spinocerebellar degeneration. Arch. Neurol.33, 243–251 (1976)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • W. H. Zangemeister
    • 2
  • S. Lehman
    • 1
  • L. Stark
    • 1
  1. 1.Department of Engineering Science, Physiological Optics and NeurologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Neurologische UniversitätsklinikHamburg 20Federal Republic of Germany

Personalised recommendations