Skip to main content
Log in

On homogeneous quasideviation means

  • Research Papers
  • Published:
aequationes mathematicae Aims and scope Submit manuscript

Summary

A functionE:I } I → ℝ is called aquasideviation on the open interval \(I \subseteq \mathbb{R}_{\dot + } \) if

  1. (E1)

    sgnE(x, y) = sgn(x − y) forx, y ∈ I;

  2. (E2)

    y → E(x, y) is a continuous function onI for each fixedx ∈ I;

  3. (E3)

    y → E(x, y)/E(x′, y) is a strictly decreasing function on ]x, x′[ forx < x′ inI.

Ifx 1,⋯, x n ∈ I then the equation

E(x 1,y) + ⋯ + E(x n ,y) = 0 has a unique solutiony = y 0 which is between\(\mathop {min}\limits_{1 \leqslant i \leqslant n} \) x i and\(\mathop {max}\limits_{1 \leqslant i \leqslant n} \) x i (see [6]). This valuey 0 is called theE-quasideviation mean ofx 1,⋯, x n and is denoted by\(\mathfrak{M}_E (x_1 ,...,x_n )\).

TheE-quasideviation mean\(\mathfrak{M}_E \) is calledhomogeneous if

$$\mathfrak{M}_E (tx_1 ,...,tx_n ) = t\mathfrak{M}_E (x_1 ,...,x_n )$$

is satisfied for alln ∈ ℕ,x 1,⋯, x n ∈ I withtx 1,⋯, tx n ∈ I.

One of the main results of the paper is the following

Theorem.If I/I = {x/y ∣ x, y ∈ I} = ℝ+ and E:I } I → ℝ is an arbitrary function, then E is a quasideviation and \(\mathfrak{M}_E \) is a homogeneous mean if and only if there exist three functions a: I → ℝ +;f: ℝ + → ℝ, m:ℝ + → ℝ + so that

  1. (i)

    a is continuous and positive;

  2. (ii)

    f is continuous and increasing on ℝ +,further it is strictly monotonic on ]0, 1[ or on ]1, ∞[ and sgn f(x) = sgn(x − 1),x > 0;

  3. (iii)

    m is multiplicative, i.e. m(xy) = m(x)m(y) for x, y > 0;

  4. (iv)

    E(x, y) = a(y)m(x)f(x/y) for x, y ∈ I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél, J. andDaróczy, Z.,Über veralgemeinerte quasilineare Mittelwerte, die mit Gewichtsfunktionen gebildet sind. Publ. Math. Debrecen10 (1963), 171–190.

    Google Scholar 

  2. Bajraktarevič, M.,Sur une equation fonctionnelle aux valeurs moyennes. Glasnik Mat.-Fiz. Astronom.13 (1958), 243–248.

    Google Scholar 

  3. De Bruijn, N. G.,Functions whose differences belong to a given class. Nieuw Arch. Wisk. (2)23 (1949), 194–218.

    Google Scholar 

  4. Daróczy, Z.,Über eine Klasse von Mittelwerten. Publ. Math. Debrecen19 (1972), 211–217.

    Google Scholar 

  5. Hardy, G. H., Littlewood, J. E. andPólya, G.,Inequalities. 2nd edition. Cambridge University Press, Cambridge, 1952.

    Google Scholar 

  6. Páles, Zs.,Characterization of quasideviation means. Acta Math. Acad. Sci. Hungar.40 (1982), 243–260.

    Google Scholar 

  7. Páles, Zs.,On the characterization of quasiarithmetic means with weight function. Aequationes Math.32 (1987), 171–194.

    Google Scholar 

  8. Páles, Zs.,General inequalities for quasideviation means. Aequationes Math.36 (1988), 32–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Páles, Z. On homogeneous quasideviation means. Aeq. Math. 36, 132–152 (1988). https://doi.org/10.1007/BF01836086

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01836086

AMS (1980) subject classification

Navigation