Advertisement

aequationes mathematicae

, Volume 15, Issue 2–3, pp 265–300 | Cite as

Fourteenth international symposium on functional equations May 21–28, 1976

  • C. Sempi
Reports of Meetings
  • 19 Downloads

Keywords

International Symposium Functional Equation Fourteenth International Symposium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kuczma, M.,On the functional equation f(x + y) = f(x) + f(y). Fund. Math.50 (1962), 387–391.Google Scholar
  2. [2]
    Kurepa, S.,On the quadratic functional. Publ. Inst. Math. Beograd13 (1959), 57–72.Google Scholar

References

  1. [1]
    Járai, A.,Ph.D. thesis. University of Debrecen, 1976.Google Scholar
  2. [2]
    Aczél, J. andDaróczy, Z.,On measures of information and their characterizations. Academic Press, New York-London, 1975.Google Scholar
  3. [3]
    Daróczy, Z. andKiesewetter, H.,Eine Funktionalgleichung von Abel und die Grundgleichung der Information. Period. Math. Hungar.4 (1973), 25–28.Google Scholar

References

  1. [1]
    Kurepa, S.,On the n-throots of normal operators. Math. Z.78 (1962), 285–292.Google Scholar
  2. [2]
    Kurepa, S.,A note on logarithms of normal operators. Proc. Amer. Math. Soc.13 (1962), 307–311.Google Scholar
  3. [3]
    Kurepa, S.,A theorem about similarity of operators. Arch. Math.14 (1963), 411–414.Google Scholar

References

  1. [1]
    Dhombres, J. G. andSpilker, J.,Über die Funktionalgleichung f(f(x) * f(y)) = f(x * y). Manuscripta Math.18 (1976), 371–390.Google Scholar
  2. [2]
    Dhombres, J. G.,Applications associatives et commutatives. C. R. Acad. Sci. Paris281 (1975), 809–812.Google Scholar
  3. [3]
    Dhombres, J. G.,Associativity on the real axis. Glasnik Mat. II,31 (1976), 37–40.Google Scholar

References

  1. [1]
    Li, T. Y. andYorke, J. A.,Period 3 implies chaos. Amer. Math. Monthly82 (1975), 985–992.Google Scholar
  2. [2]
    Montgomery, D.,Pointwise periodic homeomorphisms. Amer. Math. Monthly59 (1937), 118–120.Google Scholar
  3. [3]
    Newman, M. H. A.,A theorem on periodic transformations of spaces. Quarterly J. Math.2 (1931), 1–8.Google Scholar
  4. [4]
    Šarkovskii, A. N.,Co-existence of cycles of continuous mappings of the line into itself. (Russian). Ukrain. Mat. Z.6 (1964), 61–71; MR28 (1964), 3121.Google Scholar

Copyright information

© Birkhäuser Verlag 1977

Authors and Affiliations

  • C. Sempi

There are no affiliations available

Personalised recommendations