Advertisement

aequationes mathematicae

, Volume 11, Issue 2–3, pp 154–162 | Cite as

On the functional equation\(f(x)g(y) = \prod\limits_{i = 1}^n {h_i (a_i x + b_i y)} \)

  • John A. Baker
Research Papers

IMP Primary Subject Classifications

39A15 39A20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aczél, J.,Lectures on Functional Equations and their Applications (Academic Press, New York, London, 1966).Google Scholar
  2. [2]
    Baker, John A.,Regularity Properties of Functional Equations, Aequationes Math.6, 243–248 (1971).Google Scholar
  3. [3]
    Corwin, L.,Generalized Gaussian Measures and a ‘Functional Equation’: I, J. Functional Analysis5, 412–427 (1970).Google Scholar
  4. [4]
    Corwin, L.,Generalized Gaussian Measures and a ‘Functional Equation’: II. Functional Analysis6, 481–505 (1970).Google Scholar
  5. [5]
    Hall, R. L.,On Single-Product Functions with Rotational Symmetry, Aequationes Math.,8, 281–286 (1972).Google Scholar
  6. [6]
    Kemperman, J. H. B.,A General Functional Equation, Trans. Amer. Math. Soc.86, 28–56 (1957).Google Scholar
  7. [7]
    Kurepa, S.,On the Functional Equation T 1 (t + s) T 2 (t − s) = T 3 (t) T 4 (s), Publ. Inst. Math. (Beograd)2, 99–108 (1962).Google Scholar
  8. [8]
    Steinhaus, H.,Sur les distances des points dans les ensembles de mesure positive, Fund. Math.1, 93–104 (1920).Google Scholar
  9. [9]
    Vajzović, F.,On the Functional Equation T 1 (t + s) T 2 (t − s) = T 3 (t) T 4 (s), Publ. Inst. Math. (Beograd)4, 21–27 (1964).Google Scholar
  10. [10]
    Achte Internationale Tagung über Funktionalgleichungen in Oberwolfach vom 2.-8. August, 1970, Aequationes Math.6, 90–111 (1971).Google Scholar

Copyright information

© Birkhäuser-Verlag 1974

Authors and Affiliations

  • John A. Baker
    • 1
  1. 1.University of WaterlooWaterlooCanada

Personalised recommendations