aequationes mathematicae

, Volume 10, Issue 1, pp 97–104 | Cite as

A characterization of linear difference equations which are solvable by elementary operations

  • Charles H. Franke
Research Papers

Keywords

Difference Equation Elementary Operation Linear Difference Equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cohn, R. M.,Difference Algebra (Interscience Publ., New York, N.Y. 1965).Google Scholar
  2. [2]
    Franke, C. H.,Picard-Vessiot Theory of Linear Homogeneous Difference Equations, Trans. Amer. Math. Soc.108, 491–515 (1963).Google Scholar
  3. [3]
    Franke, C. H.,Solvability of Linear Homogeneous Difference Equations by Elementary Operations, Proc. Amer. Math. Soc.17, 240–246 (1966).Google Scholar
  4. [4]
    Franke, C. H.,A Note on the Galois Theory of Linear Homogeneous Difference Equations, Proc. Amer. Math. Soc.18, 548–551 (1967).Google Scholar
  5. [5]
    Franke, C. H.,The Galois Correspondence for Linear Homogeneous Difference Equations, Proc. Amer. Math. Soc.21, 397–401 (1969).Google Scholar
  6. [6]
    Franke, C. H.,Linearly Reducible Linear Difference Operators, Aequationes Math.6, 188–194 (1971).Google Scholar
  7. [7]
    Franke, C. H.,Reducible Linear Difference Operators Aequationes Math.9, 136–144 (1973).Google Scholar
  8. [8]
    Kolchin, E. R.,Algebraic Matric Groups and the Picard-Vessiot Theory of Homogeneous Linear Ordinary Differential Equations, Ann. of Math. (2)49, 1–42 (1948).Google Scholar

Copyright information

© Birkhüuser Verlag 1974

Authors and Affiliations

  • Charles H. Franke
    • 1
  1. 1.Seton Hall UniversitySouth OrangeUSA

Personalised recommendations