aequationes mathematicae

, Volume 46, Issue 1–2, pp 44–55 | Cite as

Definitizable hermitian matrix pencils

  • Peter Lancaster
  • Qiang Ye
Research Papers

Summary

An hermitian matrix pencilλA − B withA nonsingular is called strongly definitizable ifAp(A−1B) is positive definite for some polynomialp. We present three characterizations of strongly definitizable pencils, which generalize the classical results for definite pencils. They are, in particular, stably simultaneously diagonable. We also discuss this form of stability with respect to an open subset of the real line. Implications for some quadratic eigenvalue problems are included.

AMS (1980) subject classification

Primary 15A18m, 15A57 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BLM]
    Barkwell, L., Lancaster, P. andMarkus, A. S.,Gyroscopically stabilized systems: a class of quadratic eigenvalue problems with real spectrum, to appear in Canad. J. Math.Google Scholar
  2. [GLR]
    Gohberg, I., Lancaster, P. andRodman, L.,Matrices and indefinite scalar products. Birkhäuser, Basel, 1983.Google Scholar
  3. [L]
    Langer, H.,Spectral functions of definitizable operators in Krein spaces. [Lecture Notes in Math., vol. 948.] Springer-Verlag, Berlin, 1981, pp. 1–46.Google Scholar
  4. [LY1]
    Lancaster, P. andYe, Q.,Variational properties and Rayleigh quotient algorithms for symmetric matrix pencils, Operator Theory: Advances and Applications, vol. 40, Birkhauser, Basel, 1989, pp. 247–278.Google Scholar
  5. [LY2]
    Lancaster, P. andYe, Q.,Inverse spectral problems for linear and quadratic matrix pencils. Linear Algebra Appl.107 (1988), 293–309.CrossRefGoogle Scholar
  6. [O1]
    Ostrowski, A.,Über Eigenwerte von Produkten Hermitischer Matrizen. Abh. Math. Sem. Univ. Hamburg23 (1959), 60–68.Google Scholar
  7. [O2]
    Ostrowski, A.,Über produkte Hermitischer Matrizen und Buschel Hermitischer Formen. Math. Z.72 (1959), 1–15.CrossRefGoogle Scholar
  8. [Rod]
    Rodman, L.,Hermitian matrix polynomials. InCurrent trends in matrix theory (ed. F. Uhlig, R. Grone), North-Holland, 1987, pp. 305–329.Google Scholar
  9. [Ros]
    Roseau, M.,Vibrations in mechanical systems. Springer-Verlag, Berlin, 1984.Google Scholar
  10. [Y]
    Ye, Q.,Variational principles and numerical algorithms for symmetric matrix pencils. Ph.D. thesis, University of Calgary, 1989.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • Peter Lancaster
    • 1
    • 2
  • Qiang Ye
    • 1
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada
  2. 2.Department of Mathematical SciencesUniversity of LethbridgeLethbridgeCanada

Personalised recommendations