Skip to main content
Log in

Analysis of nonlinear oscillations by wavelet transform: Lyapunov exponents

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper we give the definition of exponents which would look like Lyapunov exponents in the cases of non-smooth flows of differential equations or iterated maps, and carry back Lyapunov exponents in smooth cases. Here we test our definition by using some simple linear and nonlinear smooth examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oseledec, V. I., ‘A multiplicative ergodic theorem, Lyapunov characteristics numbers for dynamical systems’,Transactions of the Moscow Mathematical Society 19, 1968, 197–231.

    Google Scholar 

  2. Douady, R., ‘La théorie de Pesin’, inEquations aux dérivées partielles et systèmes dynamiques non-linéaries, J. C. Saut and J.-M. Ghidaglia (eds.), Collection Travaux en Cours, Hermann, Paris, 1988.

    Google Scholar 

  3. Arnéodo, A., Argoul, F., and Grasseau, G., Les ondelettes en 1989, Exposé 9, ‘Transformation en ondelettes et renormalisation’, Lecture Notes in Mathematics, Vol. 1438, P. G. Lemarié (ed.), Springer-Verlag, Berlin, Heidelberg, 1990, pp. 125–191.

    Google Scholar 

  4. Argoul, F., Arnéodo, A., Elezgaray, J., Grasseau, G., and Murenzi, R., ‘Wavelet transform of fractal aggregates’,Physics Letters A135(6/7), 1989, 327–335.

    Google Scholar 

  5. Arnéodo, A., Grasseau, G., and Holschneider, M., ‘Wavelet transform of multifractals’,Physical Review Letters 61(20), 1988, 2281–2284.

    Google Scholar 

  6. Ghez, J. M. and Vaienti, S., ‘Integrated wavelets on fractal sets: I. The correlation dimension’,Nonlinearity 5(3), 1992, 777–790.

    Google Scholar 

  7. Ghez, J. M. and Vaienti, S., ‘Integrated wavelets on fractal sets: II. The generalized dimension’,Nonlinearity 5(3), 1992, 791–804.

    Google Scholar 

  8. Vaienti, S., ‘On a Frostman-like theorem’,Nonlinearity 4(4), 1991, 1241–1248.

    Google Scholar 

  9. Pesin, YA.B. ‘Characteristic Lyapunov exponents and smooth ergodic theory’,Russian Mathematical Surveys 32, 1977, 55.

    Google Scholar 

  10. Wiggins, S.,Introduction to Applied Nonlinear Dynamical Systems and Chaos, AMS 2, Springer-Verlag, New York, 1990.

    Google Scholar 

  11. Young, L.-S., ‘Entropy, Lyapunov exponents, and Hausdorff dimension in differentiable dynamical systems’,IEEE Transactions on Circuits and Systems CAS-30(8), 1983, 599–607.

    Google Scholar 

  12. Eckmann, J. P. and Ruelle, D., ‘Ergodic theory of chaos’,Reviews of Modern Physics 57(3), 1985, 617–656.

    Google Scholar 

  13. Farmer, J. D., Ott, E., and Yorke, J. A., ‘The dimension of chaotic attractors’,Physica 7D, 1983, 153–180.

    Google Scholar 

  14. Wolf, A., Swinney, H. L., Swift, J. B., and Vastano, J. A., ‘Determining Lyapunov exponents from a time series’,Physica 16D, 1985, 285–317.

    Google Scholar 

  15. Froeschlé, C., ‘The Lyapunov characteristic exponents and applications’,Journal de Mécanique Théorique et Appliquée, Numéro spécial, 1984, 101–132.

  16. Bennetin, G., Galgani, L., Giorgilli, A., and Strelcyn, J. M., ‘All Lyapunov exponents are effectively computable’,Physical Review A14, 1976, 2238.

    Google Scholar 

  17. Bennetin, G., Galgani, L., Giorgilli, A., and Strelcyn, J. M., ‘Lyapunov exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1. Theory’,Meccanica 15, 1980, 9.

    Google Scholar 

  18. Kapitaniak, T., ‘On strange nonchaotic attractors and their dimensions’,Chaos, Solitons and Fractals 1(1), 1991, 67–78.

    Google Scholar 

  19. Pfeiffer, F. and Kunert, A., ‘Stochastic model for rattling in gear-boxes’, inNonlinear Dynamics in Engineering Systems, W. Schiehlen (ed.), Springer-Verlag, Berlin, Heidelberg, 1990, pp. 173–180.

    Google Scholar 

  20. Ketema, Y., ‘An oscillator with cubic and piecewise linear springs’,International Journal of Bifurcation and Chaos 1–2, 1991, 349–356.

    Google Scholar 

  21. Popp, K. and Stelter, P., ‘Nonlinear oscillations induced by dry friction’, inNonlinear Dynamics in Engineering Systems, W. Schiehlen (ed.), Springer-Verlag, Berlin, Heidelberg, 1990, pp. 173–180, 233–240.

    Google Scholar 

  22. Whiston, G. S., ‘Global dynalics of a vibro-impacting linear oscillator’,Journal of Sound and Vibration 118(3), 1987, 395–429.

    Google Scholar 

  23. Meyer, Y.,Ondelettes et opératures I — Ondelettes, Hermann, Paris, 1990.

    Google Scholar 

  24. Combes, J. M., Grossmann, A., and Tchamitchian, Ph. (eds.),Ondelettes, méthodes temps fréquences et espaces de phases, Masson, 1989.

  25. Mallat, S., ‘Multifrequency channel decompositions of images and wavelet models.IEEE Transactions on Acoustics, Speech and Signal Processing 37(12), 1989, 2091–2110.

    Google Scholar 

  26. Daubechies, I., Grossmann, A., and Meyer, Y., ‘Painless non-orthonormal expansions’,Journal of Mathematical Physics 27(5), 1983, 1271–1283.

    Google Scholar 

  27. Everson, R., Sirovitch, L., and Sreenivasan, K. R., ‘Wavelet analysis of the turbulent jet’,Physics Letters A145(6/7), 1990, 314–322.

    Google Scholar 

  28. Farge, M. and Rabreau, G., ‘Transformée en ondelettes pour détecter et analyser les structures cohérentes dans les écoulements turbulents bidimensionnels’,Comptes Rendus de l'Académie des Sciences, Paris t.307, Série II, 1988, 1479.

    Google Scholar 

  29. Tchamitchian, P. and Liandrat, J., ‘Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation’, Rapport ICASE, NASA Langley Research Center, 1990, 34 pp.

  30. Perrier, V., ‘Ondelettes et simulation numérique’, PhD of Université Paris VI, February 5th, 1991.

  31. Jaffard, S., ‘Pointwise regularity of functions and wavelet coefficients’, inWavelets and Applications, Y. Meyer (ed.), RMA 20, Masson and Springer-Verlag, Paris, 1992, pp. 413–419.

    Google Scholar 

  32. Schwartz, L.,Théorie des Distributions, Hermann, Paris, 1966, Edition revue 1973.

    Google Scholar 

  33. Plaut, R. H., Hsieh, J. C., and Szemplinska-Stupnicka, W., ‘Period doubling and chaos in unsymmetric structures under parametric excitation’,Journal of Applied Mechanics 56, 1989, 947–952.

    Google Scholar 

  34. Lamarque, C.-H. and Malasoma, J.-M., ‘Computation of basin of attraction for three coexisting attractors’,European Journal of Mechanics A11(6), 1992, 781–790.

    Google Scholar 

  35. Tongue, B. H. and Smith, D., ‘Determining Lyapunov exponents by means of interpolated mapping’,Journal of Applied Mechanics 56, 1989, 691–696.

    Google Scholar 

  36. Hsu, C. S.,Cell-to-Cell Mapping, AMS 64, Springer-Verlag, New York, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamarque, C.H., Malasoma, J.M. Analysis of nonlinear oscillations by wavelet transform: Lyapunov exponents. Nonlinear Dyn 9, 333–347 (1996). https://doi.org/10.1007/BF01833360

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01833360

Key words

Navigation