Skip to main content
Log in

Molecular and cellular analysis of basement membrane invasion by human breast cancer cells in Matrigel-basedin vitro assays

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

In vitro analyses of basement membrane invasiveness employing Matrigel (a murine tumor extract rich in basement membrane components) have been performed on human breast cancer model systems. Constitutive invasiveness of different human breast cancer (HBC) cell lines has been examined as well as regulation by steroid hormones, growth factors, and oncogenes. Carcinoma cells exhibiting a mesenchymal-like phenotype (vimentin expression, lack of cell border associated uvomorulin) show dramatically increased motility, invasiveness, and metastatic potential in nude mice. These findings support the hypothesis that epithelial to mesenchymal transition (EMT)-like events may be instrumental in the metastatic progression of human breast cancer. The MCF-7 subline MCF-7ADR appears to have undergone such a transition. The importance of such a transition may be reflected in the emergence of vimentin expression as an indicator of poor prognosis in HBC. Matrix degradation and laminin recognition are highlighted as potential targets for antimetastatic therapy, and analyses of laminin attachment and the matrix metalloproteinase (MMP) family in HBC cell lines are summarized. Matrigel-based assays have proved useful in the study of the molecular mechanisms of basement membrane invasiveness, their regulation in HBC cells, and their potential as targets for antimetastatic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fidler IJ: Selection of successive tumour lines for metastasis. Nature [New Biol] 242:148–149, 1973

    Google Scholar 

  2. Raz A, Hanna N, Fidler IJ: In vivo isolation of a metastatic tumor cell variant involving selective and nonadaptive processes. J Natl Cancer Inst 66:183–189, 1981

    PubMed  Google Scholar 

  3. Talmadge JE, Fidler IJ: Enhanced metastatic potential of tumor cells harvested from spontaneous metastases of heterogeneous murine tumors. J Natl Cancer Inst 69:975–980, 1982

    PubMed  Google Scholar 

  4. Kozlowski JM, Hart IR, Fidler IJ, Hanna H: A human melanoma line heterogeneous with respect to metastatic capacity in athymic nude mice. J Natl Cancer Inst 72:913–917, 1984

    PubMed  Google Scholar 

  5. Nicolson GL, Brunson KW, Fidler IJ: Specificity of arrest, survival, and growth of selected metastatic variant cell lines. Cancer Res 38:4105–4111, 1978

    PubMed  Google Scholar 

  6. Tao TW, Matter A, Vogel K, Burger MM: Liver-colonizing melanoma cells selected from B-16 melanoma. Int J Cancer 23:854–857, 1979

    PubMed  Google Scholar 

  7. Fidler IJ: The Ernst W. Bertner Memorial Award lecture: the evolution of biological heterogeneity in metastatic neoplasms. Symp Fundam Cancer Res 36:5–26, 1983

    PubMed  Google Scholar 

  8. Hill RP: Metastasis.In Tannock IF, Hill RP (eds) The Basic Science of Oncology. Pergamon Press, New York, 1987, pp 160–175

    Google Scholar 

  9. Schirrmacher V: Cancer metastasis: Experimental approaches, theoretical concepts and impacts for treatment strategies. Advances in Cancer Research 43:1–73, 1985.

    PubMed  Google Scholar 

  10. Fidler IJ: Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res 38:2651–2660, 1978.

    PubMed  Google Scholar 

  11. Tryggvason K: Patterns of basement membrane degradation by metastatic tumor cell enzymes.In Lapis KMJ, Liotta LA, Rabson AS (eds) Biochemistry and Molecular Genetics of Cancer Metastasis. Martinus Nijhoff, Boston-Dordrecht-Lancaster, 1986, pp 151–163

    Google Scholar 

  12. Terranova VP, Hujanen ES, Martin GR: Basement membrane and the invasive activity of metastatic tumor cells. J Natl Cancer Inst 77:311–316, 1986

    PubMed  Google Scholar 

  13. Liotta LA, Wewer U, Rao NC, Schiffmann E, Stracke M, Guirguis R, Thorgeirsson UP, Muschel R, Sobel M: Biochemical mechanisms of tumor invasion and metastasis.In Prodi G, Liotta LA, Lollini P-L, Gerbisa S, Gorini S, Hellmann K (eds) Cancer Metastasis: Biological and Biochemical Mechanisms and Clinical Aspects. Plenum, New York, 1987, pp 161–169

    Google Scholar 

  14. Timpl R, Fujiwara S, Dziadek M, Aumailley M, Weber S, Engel J: Laminin, proteoglycan, nidogen, and collagen IV: structural models and molecular interactions.In Porter R, Whelan J (eds) Basement Membranes and Cell Movement. Pitman, London, 1984, pp 25–37

    Google Scholar 

  15. Timpl R, Dziadek M: Structure, development and molecular pathology of basement membranes. Int Rev Exp Pathol 29:1–112, 1986

    PubMed  Google Scholar 

  16. Barsky SH, Siegal GP, Jannotta F, Liotta LA: Loss of basement membrane components by invasive tumors but not by their benign counterparts. Lab Invest 49:140–147, 1983

    PubMed  Google Scholar 

  17. Liotta LA, Rao CN, Barsky SH: Tumor invasion and the extracellular matrix. Lab Invest 49:636–649, 1983

    PubMed  Google Scholar 

  18. Barsky SH, Togo S, Garbisa S, Liotta LA: Type IV collagenase immunoreactivity in invasive breast carcinoma. Lancet i:296–297, 1983

    Google Scholar 

  19. Terranova VP, Liotta LA, Russo RG, Martin GR: Role of laminin in the attachment and metastasis of murine tumor cells. Cancer Res 42:2265–2269, 1982

    PubMed  Google Scholar 

  20. Liotta LA, Thorgeirsson UP, Garbisa S: Role of collagenases in tumor cell invasion. Cancer Met Rev 1: 277–288, 1982

    Google Scholar 

  21. Sommers CL, Thompson EW, Torri J, Kemler R, Gelmann EP, Byers SW: Absence of cell adhesion molecule uvomorulin expression in invasive human breast cancer cell lines. Cell Growth and Differentiation 2:365–372, 1991

    PubMed  Google Scholar 

  22. Liotta LA, Mandler R, Murano G, Katz DA, Gordon RK, Chiang PK, Schiffman E: Tumor cell autocrine motility factor. Proc Natl Acad Sci USA 83:3302–3306, 1986

    PubMed  Google Scholar 

  23. Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W: Scatter factor: Molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 111:2097–2108, 1990

    PubMed  Google Scholar 

  24. Gunthert U, Hofmann M, Rudy W, Reber S, Zoller M, Haubmann I, Matzku S, Wenzel A, Ponta H, Herrlich P: A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65:13–24, 1991

    PubMed  Google Scholar 

  25. Mareel M, Kint J, Meyvisch C: Methods of study of the invasion of malignant C3H-mouse fibroblasts into embryonic chick heart in vitro. Virchows Archiv B, Cell Pathol 30:95–111, 1979

    Google Scholar 

  26. Hart IR, Fidler IJ: An in vitro quantitative assay for tumor cell invasion. Cancer Res 38:3218–3224, 1978

    PubMed  Google Scholar 

  27. Poste G, Doll J, Hart IR, Fidler IJ: In vitro selection of murine B16 melanoma variants with enhanced tissue invasive properties. Cancer Res 40:1636–1644, 1980

    PubMed  Google Scholar 

  28. Starkey JR, Hosick HL, Stanford DR, Liggitt HD: Interaction of metastatic tumor cells with bovine lens. Cancer Res 44:1585–1594, 1984

    PubMed  Google Scholar 

  29. Ossowski L, Reich E: Experimental model for quantitative study of metastasis. Cancer Res 40:2300–2309, 1980

    PubMed  Google Scholar 

  30. Liotta LA, Lee WC, Morakis DJ: New method for preparing large surface of intact basement membrane for tumor invasion studies. Cancer Lett 11:141–147, 1980

    PubMed  Google Scholar 

  31. Mignatti P, Robbins E, Rifkin DB: Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Cell 47:487–498, 1986

    PubMed  Google Scholar 

  32. Kramer RH, Vogel KG: Selective degradation of basement membrane macromolecules by metastatic melanoma cells. J Natl Cancer Inst 72:889–899, 1984

    PubMed  Google Scholar 

  33. Yee C, Shiu RPC: Degradation of endothelial basement membrane by human breast cancer cell lines. Cancer Res 46:1835–1839, 1986

    PubMed  Google Scholar 

  34. Terranova VP, Hujanen ES, Loeb DM, Martin GR, Thornburg L, Glushko V: Use of a reconstituted basement membrane to measure cell invasiveness and select for highly invasive tumor cells. Proc Natl Acad Sci USA 83:465–469, 1986

    PubMed  Google Scholar 

  35. Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW, Martin GR: Basement membrane complexes with biological activity. Biochem 25:312–318, 1986

    Google Scholar 

  36. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, McEwan RN: A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47:3239–3245, 1987

    PubMed  Google Scholar 

  37. Hendrix MJ, Seftor EA, Seftor REB, Fidler IJ: A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Lett 38:137–147, 1987

    PubMed  Google Scholar 

  38. Albini A, Auckerman SL, Melchiori A, Thompson EW, Reich R, Shima TB, Martin GR, Iwamoto Y: Basement membranes, reconstituted to assess the invasiveness of tumor cells.In Nicolson GL, Fidler IJ (eds) Tumor Progression and Metastasis. Alan R Liss Inc, New York, 1988, pp 261–270

    Google Scholar 

  39. Kramer RH, Bensch KG, Wong J: Invasion of reconstituted basement membrane matrix by metastatic human tumor cells. Cancer Res 46:1980–1986, 1986

    PubMed  Google Scholar 

  40. Thompson EW, Nakamura S, Shima TB, Martin GR, Biberfield P, Gallo RC, Salahuddin SZ, Albini A: Supernatants of AIDS-related Kaposi's Sarcoma cells [AIDS-KS] induce endothelial cell chemotaxis and invasiveness. Cancer Res 51:2670–2676, 1991

    PubMed  Google Scholar 

  41. Iwamoto Y, Robey FA, Graf J, Sasaki M, Kleinman HK, Yamada Y, Martin GR: YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 238:1132–1134, 1987

    PubMed  Google Scholar 

  42. Reich R, Thompson EW, Iwamoto Y, Martin GR, Deason J, Fuller GC, Miskin R: Inhibitors of plasminogen activator, serine proteases and collagenase IV prevent the invasion of basement membranes by metastatic cells. Cancer Res 48:3307–3312, 1988

    PubMed  Google Scholar 

  43. Repesh LA: A new in vitro assay for quantitating tumor cell invasion. Invasion and Metastasis 9: 192–208, 1989

    Google Scholar 

  44. Hendrix MJC, Seftor EA, Seftor REB, Misiorowski RL, Saba PZ, Sundareshan P, Welsh DR: Comparison of tumor cell invasion assays: human amnion versus reconstituted basement membrane barriers. Invasion and Metastasis 9:278–297, 1989

    Google Scholar 

  45. Bonfil DR, Reddell RR, Ura H, Reich R, Fridman R, Harris CC, Klein-Szanto AJP: Invasive and metastatic potential of a v-Ha-ras- transformed human bronchial epithelial cell line. J Natl Cancer Inst 81:587–594, 1989

    PubMed  Google Scholar 

  46. Ura H, Bonfil RD, Reich R, Reddel R, Pfeifer A, Harris CC: Expression of type IV collagenase and procollagen genes and its correlation with the tumorigenic, invasive, and metastatic abilities of oncogene-transformed human bronchial epithelial cells. Cancer Res 49:4615–4621, 1989

    PubMed  Google Scholar 

  47. Axelrod JH, Reich R, Miskin R: Expression of human recombinant plasminogen activators enhances invasion and experimental metastasis of H-ras-transformed NIH 3T3 cells. Mol Cell Biol 9: 2133–2141, 1989

    PubMed  Google Scholar 

  48. Reich R, Royce L, Martin GR: Eicosapentaenoic acid reduces the invasive and metastatic activities of malignant tumor cells. Biochem Biophys Res Commun 160: 559–564, 1989

    PubMed  Google Scholar 

  49. Thompson EW, Paik S, Brünner N, Sommers CL, Zugmaier G, Shima TB, Torri J, Donahue S, Lippman ME, Martin GR, Dickson RB: Association of increased basement membrane-invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150:534–544, 1992

    PubMed  Google Scholar 

  50. Fransden TL, Boysen BE, Jirus S, Spang-Thomsen M, Dano K, Thompson EW, Brünner N: Experimental models for the study of human cancer cell invasion and metastasis. Fibrinolysis Vol 6 Suppl 4:71–76, 1992

    Google Scholar 

  51. Noel AC, Calle A, Emondard HP, Nusgens BV, Simar L, Foidart J, Lapiere CM, Foidart J-M: Invasion of reconstituted basement membrane matrix is not correlated to malignant metastatic cell phenotype. Cancer Res 51:405–414, 1991.

    PubMed  Google Scholar 

  52. Lippman ME, Dickson RB: Mechanisms of growth control in normal and malignant breast epithelium. Rec Prog Horm Res 45:383–439, 1989

    PubMed  Google Scholar 

  53. Allegra JC, Barlock A, Huff KK, Lippman ME: Changes in multiple or sequential estrogen receptor determinations in human breast cancer. Cancer 45: 792–794, 1980

    PubMed  Google Scholar 

  54. Cattoretti G, Andreola S, Clemente C, D'Amato L, Rilke F: Vimentin and p53 expression on epidermal growth factor receptor-positive, oestrogen receptor-negative breast carcinomas. Br J Cancer 57:353–357, 1988

    PubMed  Google Scholar 

  55. Raymond WA, Leong AS-Y: Co-expression of cytokeratin and vimentin intermediate filament proteins in benign and neoplastic breast epithelium. J Pathol 157:299–306, 1989

    PubMed  Google Scholar 

  56. Raymond WA, Leong AS-Y: Vimentin-A new prognostic parameter in breast carcinoma? J Pathol 158:107–114, 1989

    PubMed  Google Scholar 

  57. Engel LW, Young NA: Human breast carcinoma cells in continuous culture: a review. Cancer Res 38:4327–4339, 1978

    PubMed  Google Scholar 

  58. Lippman ME, Bolan G, Huff K: The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long term culture. Cancer Res 36:4595–4601, 1976

    PubMed  Google Scholar 

  59. Darbre P, Yates Y, Curtis S, King RJB: Effect of estradiol on human breast cancer cells in culture. Cancer Res 43:349–354, 1983

    PubMed  Google Scholar 

  60. Clarke R, Brünner N, Thompson EW, Glanz P, Katz D, Dickson RB, Lippman ME: The inter-relationships between ovarian-independent growth, tumorigenicity, invasiveness and antioestrogen-resistance in the malignant progression of human breast cancer. J Endocrinol 122:331–340, 1989

    PubMed  Google Scholar 

  61. Clarke R, Brünner N, Katzenellenbogen BS, Thompson EW, Norman MJ, Koppi C, Paik S, Lippman ME, Dickson RB: Progression of human breast cancer cells from hormone dependent to hormone independent growth both in vitro and in vivo. Proc Natl Acad Sci USA 86:3649–3653, 1989

    PubMed  Google Scholar 

  62. Thompson EW, Brünner N, Torri J, Boulay V, Wright A, Steeg P, Lippman ME, Clarke R: The invasive and metastatic properties of hormone-independent and hormone-responsive variants of MCF-7 human breast cancer cells. Clin Exp Metast, in press, 1992

  63. Shafie SM, Liotta LA: Formation of metastasis by human breast cancer cells (MDF-7) in nude mice. Cancer Lett 11:81–87, 1980

    PubMed  Google Scholar 

  64. Sommers CL, Papageorge A, Wilding G, Gelmann EP: Growth properties and tumorigenesis of MCF-7 cells transfected with isogenic mutants ofras H. Cancer Res 50:67–71, 1990

    PubMed  Google Scholar 

  65. Sommers CL, Walker-Jones D, Heckford SE, Worland P, Valverius E, Clarke R, McCormick F, Stampfer M, Abularach S, Gelmann E: Vimentin rather than keratin expression in some hormone-independent breast cancer cell lines and in oncogene-transformed mammary epithelial cells. Cancer Res 49:4258–4263, 1989

    PubMed  Google Scholar 

  66. Behrens J, Mareel MM, Van Roy FM, Birchmeier W: Dissecting tumor cell invasion: Epithelial cells acquire invasive properties after loss of uvomorulin mediated cell cell adhesion. J Cell Biol 108:2435–2447, 1989

    PubMed  Google Scholar 

  67. Boyer B, Tucker GC, Valles AM, Franke WW, Thiery JP: Rearrangements of desmosomal and cytoskeletal proteins during the transition from epithelial to fibroblastoid organization in cultured rat bladder carcinoma cells. J Cell Biol 109:1495–1509, 1989

    PubMed  Google Scholar 

  68. Vickers PJ, Dickson RB, Shoemaker R, Cowan K: A multidrug-resistant MCF-7 human breast cancer cell line which exhibits cross-resistance to antiestrogens and hormone-independent tumor growthin vivo. Molec Endocrinol 2:886–892, 1988

    Google Scholar 

  69. Boyer B, Thiery JP: Epithelial cell adhesion mechanisms. J Membrane Biol 112:97–108, 1989

    Google Scholar 

  70. Sommers CL, Heckford SE, Skerker JM, Worland P, Torri JA, Thompson EW, Byers SW, Gelmann EP: Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Res 52:5190–5197, 1992

    PubMed  Google Scholar 

  71. Albini A, Graf JG, Kitten GT, Kleinman HK, Martin GR, Veillette A, Lippman ME: 17β-estradiol regulates and v-Ha-ras transfection constitutively enhances MCF-7 breast cancer cell interactions with basement membrane. Proc Natl Acad Sci USA 83: 8182–8186, 1986

    PubMed  Google Scholar 

  72. Thompson EW, Reich R, Shima TB, Albini A, Graf G, Martin GR, Dickson, RB, Lippman ME: Differential regulation of growth and invasiveness of MCF-7 breast cancer cells by antiestrogens. Cancer Res 48:6764–6768, 1988

    PubMed  Google Scholar 

  73. Thompson EW, Katz D, Shima TB, Martin GR, Lippman ME, Dickson RB: ICI 164,384: A pure antagonist of estrogen-stimulated MCF-7 cell proliferation and invasiveness. Cancer Res 49:6929–6934, 1989

    PubMed  Google Scholar 

  74. Thompson EW, Lippman ME, Dickson RB: Regulation of basement membrane — invasiveness in human breast cancer model systems. Mol Cell Endocrinol 82:C203–208, 1991

    PubMed  Google Scholar 

  75. Thompson EW, Torri J, Sabol M, Sommers CL, Byers SW, Paik S, Martin GR, Lippman ME, Valverius EM, Stampfer MR, Dickson RB: Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. J Natl Cancer Inst, submitted, 1992

  76. Hunt G: The role of laminin in cancer cell invasion and metastasis. Exp Cell Biol 57:165–176, 1989

    PubMed  Google Scholar 

  77. Rao CN, Barsky SH, Terranova VP, Liotta LA: Isolation of a tumor laminin receptor. Biochem Biophys Res Commun 111:804–808, 1983

    PubMed  Google Scholar 

  78. Horan-Hand P, Thor A, Schlom J, Rao CN, Liotta LA: Expression of laminin receptor in normal and carcinomatous human tissues as defined by a monoclonal antibody. Cancer Res 45:2713–2719, 1985

    PubMed  Google Scholar 

  79. Yow H, Wong JM, Chen HS, Lee C, Steele GD Jr, Chen LB: Increased mRNA expression of a laminin-binding protein in human colon carcinoma: complete sequence of a full length cDNA encoding the protein. Proc Natl Acad Sci USA 85:6394–6398, 1988

    PubMed  Google Scholar 

  80. Castronovo V, Colin C, Claysmith AP, Chen PH, Lifrange E, Lambotte R, Krutzsch H, Liotta LA, Sobel ME: Immunodetection of the metastasis-associated laminin receptor in human breast cancer cells obtained by fine-needle aspiration biopsy. Am J Pathol 137:1373–1381, 1990

    PubMed  Google Scholar 

  81. D'Errico A, Garbisa S, Liotta LA, Castronovo V, Stetler-Stevenson WG, Grigioni WF: Augmentation of type IV collagenase, laminin receptor, and Ki67 proliferation antigen associated with human colon, gastric, and breast carcinoma progress. Modern Pathol 4:239–268, 1991

    Google Scholar 

  82. Wewer UM, Liotta LA, Jaye M, Ricca GA, Drohan WN, Claysmith AP, Rao CN, Wirth P, Coligan JE, Albrechtsen R, Mudryj M, Sobel ME: Altered levels of laminin receptor mRNA in various human carcinoma cells which have different abilities to bind laminin. Proc Natl Acad Sci USA 83:7137–7141, 1986.

    PubMed  Google Scholar 

  83. Demeter LM, Stoler MH, Sobel ME, Broker TR, Chow LT: Expression of high-affinity laminin receptor mRNA correlates with cell proliferation rather than invasion in human papillomavirus-associated cervical neoplasms. Cancer Res 52:1561–1567, 1992

    PubMed  Google Scholar 

  84. Albelda SM, Buck CA: Integrins and other cell adhesion molecules. FASEB J 4:2868–2880, 1990

    PubMed  Google Scholar 

  85. Ruoslahti E, Giancotti FG: Integrins and tumor cell dissemination. Cancer Cells 1:119–126, 1989

    PubMed  Google Scholar 

  86. Liotta LA, Steeg PS, Stetler-Stevenson WG: Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell 64:327–336, 1991

    PubMed  Google Scholar 

  87. Turpeenniemi-Hujanen T, Thorgiersson UP, Rao CN, Liotta LA: Laminin increases the release of type IV collagenase from malignant cells. J Biol Chem 261:1883–1889, 1986

    PubMed  Google Scholar 

  88. Kanemoto T, Reich R, Royce L, Greatorex D, Adler SH, Shiraishi N, Martin GR, Yamada Y, Kleinman HK: Identification of an amino acid sequence from the laminin A chain that stimulates metastasis and collagenase IV production. Proc Natl Acad Sci USA 87:2279–2283, 1990

    PubMed  Google Scholar 

  89. Horowitz A, Duggan K, Greggs R, Decker C, Buck C: The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin. J Cell Biol 101:2314–2144, 1985

    Google Scholar 

  90. Iwamoto Y, Graf J, Sasaki M, Kleinman HK: Synthetic pentapeptide from the B1 chain of laminin promotes B16F10 melanoma cell migration. J Cell Physiol 134: 287–291, 1988

    PubMed  Google Scholar 

  91. Daneker GW Jr, Piazza AJ, Steele GD Jr, Mercurio AM: Relationship between extracellular matrix interactions and degree of differentiation in human colon carcinoma cell lines. Cancer Res 49:681–686, 1989

    PubMed  Google Scholar 

  92. Castronovo V, Taraboletti G, Sobel ME: Functional domains of the 67-kDa laminin receptor precursor. J Biol Chem 266:20440–20446, 1991

    PubMed  Google Scholar 

  93. Castronovo V, Taraboletti G, Sobel ME: Laminin receptor complementary DNA-deduced synthetic peptide inhibits cancer cell attachment to endothelium. Cancer Res 51:5672–5678, 1991

    PubMed  Google Scholar 

  94. Castronovo V, Taraboletti G, Liotta LA, Sobel ME: Modulation of laminin receptor expression by estrogen and progestins in human breast cancer cell lines. J Natl Cancer Inst 81:781–788, 1989

    PubMed  Google Scholar 

  95. Shi YE, Torri J, Sobel M, Yamada Y, Lippman ME, Dickson RB, Thompson EW: Regulation of laminin receptors by progestin in T47D human breast cancer cells [abstract]. Proc Am Assoc Cancer Res 32:66, 1991

    Google Scholar 

  96. Thompson EW, Donahue S, Torri J, Lippman ME, Liotta LA, Dickson RB, Stetler-Stevenson WG: Human type IV collagenase autoinhibitory sequences inhibit basement membrane-invasion by MDA-MB-231 human breast cancer cells. Cancer Res, in press, 1993

  97. Liotta LA: Tumor invasion and metastases: Role of the basement membrane. Cancer Res 46:1–7, 1986

    PubMed  Google Scholar 

  98. Nakajima M, Welch DR, Belloni PN, Nicolson GL: Degradation of basement membrane type IV collagen and lung subendothelial matrix by rat mammary adenocarcinoma cell clones of differing metastatic potentials. Cancer Res 47:4869–4876, 1987

    PubMed  Google Scholar 

  99. Garbisa S, Pozzatti R, Muschel RJ, Saffioti U, Ballin M, Goldfarb RH, Khoury G, Liotta LA: Secretion of type IV collagenolytic protease and metastatic phenotype: Induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-E1a. Cancer Res 47:1523–1528, 1987

    PubMed  Google Scholar 

  100. Turpeenniemi-Hujanen T, Thorgeirsson UP, Hart IR, Grant SS, Liotta LA: Expression of collagenase IV (basement membrane collagenase) activity in murine tumor cell hybrids that differ in metastatic potential. J Natl Cancer Inst 75:99–103, 1985

    PubMed  Google Scholar 

  101. Liotta LA, Kleinerman J, Catanzara P, Rynbrandt D: Degradation of basement membrane collagen by murine tumor cells. J Natl Cancer Inst 58:1427–1431, 1977

    PubMed  Google Scholar 

  102. Collier IE, Wilhelm SM, Eisen AZ, Marmer BL, Grant GA, Seltzer JL, Kronberger A, He C, Bauer E, Goldberg GI: H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem 263:6579–6587, 1988

    PubMed  Google Scholar 

  103. Whitham SE, Murphy G, Angel P, Rahmsdorf HJ, Smith BJ, Lyons A, Harris TJR, Reynolds JJ, Herrlich P, Docherty AJP: Comparison of human stromelysin and collagenase by cloning and sequence analysis. Biochem J 240:913–916, 1986

    PubMed  Google Scholar 

  104. Wilhelm SM, Collier IE, Marmer BL, Eisen AZ, Grant GA, Goldberg GI: SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem 264:17213–17221, 1989

    PubMed  Google Scholar 

  105. Greenhalgh DA, Yuspa SH: Malignant conversion of murine squamous papilloma cell lines by transfection with the fos oncogene. Mol Carcinogenesis 1:134–143, 1988

    Google Scholar 

  106. Albini A, Melchiori A, Santi L, Liotta LA, Brown PD, Stetler-Stevenson WG: Tumor cell invasion inhibited by TIMP-2. J Natl Cancer Inst 83:775–779, 1991

    PubMed  Google Scholar 

  107. Ballin M, Gomez DE, Sinha CC, Thorgeirsson UP: Ras oncogene mediated induction of a 92kDa metalloproteinase: Strong correlation with the malignant phenotype. Biochem Biophys Res Commun 154:832–838, 1988

    PubMed  Google Scholar 

  108. Yamagata S, Ito Y, Tanaka R, Shimizu S: Gelatinases of metastatic cell lines of murine colonic carcinoma as detected by substrate gel electrophoresis. Biochem Biophys Res Commun 151:158–162, 1988

    PubMed  Google Scholar 

  109. Yamagata S, Tanaka R, Ito Y, Shimizu S: Gelatinases of murine metastatic tumor cells. Biochem Biophys Res Commun 158:228–234, 1989

    PubMed  Google Scholar 

  110. Librach CL, Werb Z, Fitzgerald ML, Chiu K, Corwin NM, Esteves RA, Grobbelny R, Damsky CH, Fisher SJ: 92-kD type IV collagenase mediates invasion of human cytotrophoblasts. J Cell Biol 113:437–449, 1991

    PubMed  Google Scholar 

  111. Stetler-Stevenson WG, Talano J-A, Gallagher ME, Krutzsch HC, Liotta LA: Inhibition of human type IV collagenase by a highly conserved peptide sequence derived from its prosegment. Am J Med Sci 302:163–170, 1991

    PubMed  Google Scholar 

  112. Melchiori A, Albini A, Ray JM, Stetler-Stevenson WG: Inhibition of tumor cell invasion by a highly conserved peptide sequence from the matrix metalloproteinase enzyme prosegment. Cancer Res 52:2353–2356, 1992.

    PubMed  Google Scholar 

  113. Thompson EW, Yoon J, Burgess MB, Dickson RB, Goldberg GI, Lippman, ME, Kern FG: Matrix metallo-proteinase family analysis in human breast cancer cell lines of differentialin vivo andin vitro invasiveness [abstract]. Proc Am Assoc Cancer Res 32:71, 1991

    Google Scholar 

  114. Murphy G, Docherty AJP: Molecular studies on the connective tissue metalloproteinases and their inhibitor TIMP.In Glauert AM (ed) The Control of Tissue Damage. Elsevier, New York, 1988, pp 223–243

    Google Scholar 

  115. Stetler-Stevenson WG, Krutzsch HC, Liotta LA: Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J Biol Chem 264:17374–17378, 1989

    PubMed  Google Scholar 

  116. Goldberg GI, Marmer BL, Grant GA, Eisen AZ, Wilhelm SM, He C: Human 72-kilodalton type IV collagenase forms a complex with tissue inhibitor of metalloproteinases designated TIMP-2. Proc Natl Acad Sci USA 86:8297–8311, 1989

    Google Scholar 

  117. Woessner JF Jr: Matrix metalloproteinases and their inhibitors in tissue remodelling. FASEB J 5:2145–2154, 1991

    PubMed  Google Scholar 

  118. Schultz RM, Silberman S, Persky B, Bajkowski AS, Carmichael DF: Inhibition by human recombinant tissue inhibitor of metalloproteinases of human amnion invasion and lung colonization by murine B16-F10 melanoma cells. Cancer Res 48:5539–5545, 1988

    PubMed  Google Scholar 

  119. Reich R, Alder SH, Martin GR, Royce LS: Use ofin vitro assays to define the malignant activities of tumor cells and to screen for antimetastatic drugs. Altern Meth Toxicol 7:11–22, 1989

    Google Scholar 

  120. Albini A, Melchiori A, Santi L, Liotta LA, Brown PD, Stetler-Stevenson WG: Tumor cell invasion inhibited by TIMP-2. J Natl Cancer Inst 83:775–779, 1991

    PubMed  Google Scholar 

  121. Khokha R, Waterhouse P, Yagel S, Lala PK, Overall CM, Norton G, Denhardt DT: Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on swiss 3T3 cells. Science 243:947–950, 1989

    PubMed  Google Scholar 

  122. DeClerck YA, Perez N, Shimada H, Boone TC, Langley KE, Taylor SM: Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res 52:701–708, 1992

    PubMed  Google Scholar 

  123. Springman EB, Angleton EL, Birkedahl-Hansen H, Van Wart HE: Multiple modes of activation of latent human fibroblast collagenase — Evidence for the role of a cys-73 active site zinc complex in latency and a cysteine switch mechanism for activation. Proc Natl Acad Sci 87:364–368, 1990

    PubMed  Google Scholar 

  124. Stetler-Stevenson W, Krutzsch HC, Wacher M, Margulies IMK, Liotta LA: The activation of human type IV collagenase proenzyme: Sequence identification of the major conversion product following organomercurial activation. J Biol Chem 264:1353–1356, 1989

    PubMed  Google Scholar 

  125. Brown PD, Levy AT, Margulies IM, Liotta LA, Stetler-Stevenson WG: Independent expression and cellular processing of Mr 72,000 type IV collagenase and interstitial collagenase in human tumorigenic cell lines. Cancer Res 50:6184–6191, 1990

    PubMed  Google Scholar 

  126. Overall CM, Sodek J: Concanavalin A produces a matrix-degradative phenotype in human fibroblasts. J Biol Chem 265:21141–21151, 1990

    PubMed  Google Scholar 

  127. Ward RV, Atkinson SJ, Slocombe PM, Docherty AJP, Reynolds JJ, Murphy G: Tissue inhibitor of metalloproteinase-2 inhibits the activation of 72 kDa progelatinase by fibroblast membranes. Biochim Biophys Acta 1079:242–246, 1991

    PubMed  Google Scholar 

  128. Azzam HS, Thompson EW: Collagen-induced activation of the 72 kDa type IV collagenase in human fibroblasts and a carcinosarcoma-derived human breast cancer cell line. Cancer Res 52:4540–4544, 1992

    PubMed  Google Scholar 

  129. Azzam HS, Arand GA, Thompson EW: Collagen-induced activation of the 72 kDa type IV collagenase (MMP-2) is restricted to vimentin-positive invasive human breast cancer cell lines [abstract]. Clin Exptl Meth 10(Suppl 1):97, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, SN., Arand, G., Azzam, H. et al. Molecular and cellular analysis of basement membrane invasion by human breast cancer cells in Matrigel-basedin vitro assays. Breast Cancer Res Tr 24, 241–255 (1993). https://doi.org/10.1007/BF01833264

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01833264

Key words

Navigation