aequationes mathematicae

, Volume 48, Issue 2–3, pp 262–282 | Cite as

Complementary permutations for abelian groups

  • J. H. B. Kemperman
  • Teunis J. Ott
Research Papers


LetG be an additively written abelian group and leth: G → G be a given function. M. Hall Jr. (1952) and L. Fuchs (1958) already answered the following question. For what functionsh: G → G does the functional equationσ(x) + τ(x) = h(x) (x ∈ G) have as its solution a pair of permutationsσ andτ ofG? In this paper, we give explicit constructions of such a pairσ, τ in a number of cases, in particular whenh(x) ≡ x andG is finite. We further determine the finite groupsG where the latterσ, τ can be chosen to be automorphisms.

In the case whereG is an infinite topological group, we study in how farσ andτ can be chosen as Borel measurable permutations, given thath: G → G itself is Borel measurable.

AMS (1980) subject classification

Primary 39B50 Secondary 20Kxx, 68R05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bateman, P.,Complete mappings of infinite groups. Amer. Math. Monthly57 (1950), 621–622.Google Scholar
  2. [2]
    Brualdi, R. A. andNewman, M.,An enumeration problem for a congruence equation. J. Res. Nat. Bur. Standards74B (1970), 37–40.Google Scholar
  3. [3]
    Chang, G. J.,Complete diagonals of latin squares. Canad. Math. Bull.22 (1979), 477–481.Google Scholar
  4. [4]
    Cohn, D. L.,Measure theory. Birkhäuser, Boston, 1980.Google Scholar
  5. [5]
    Fuchs, L.,Ein kombinatorisches Problem bezüglich abelscher Gruppen. Math. Nachr.18 (1958), 292–297.Google Scholar
  6. [6]
    Gallian, J. A.,The mathematics of identification numbers. College Math. J.22 (1991), 194–202.Google Scholar
  7. [7]
    Gordon, B.,Sequences in groups with distinct partial products. Pacific J. Math.11 (1961), 1309–1313.Google Scholar
  8. [8]
    Guy, R. K.,Parker's permutation problem involves the Catalin numbers. Amer. Math. Monthly100 (1993), 287–289; 948–949.Google Scholar
  9. [9]
    Hall, M. Jr.,A combinatorial problem on abelian groups. Proc. Amer. Math. Soc.3 (1952), 584–587.Google Scholar
  10. [10]
    Hall, M. andPaige, L. J.,Complete mappings of finite groups. Pacific J. Math.5 (1955), 541–549.Google Scholar
  11. [11]
    Isbell, J.,The Gordon game of a finite group. Amer. Math. Monthly99 (1992), 567–569.Google Scholar
  12. [12]
    Maharam, D. andStone, A. H.,One-to-one functions and a problem of subfields.In: Measure Theory Oberwolfach 1979 Proceedings, D. Kölzow ed. [Lecture Notes in Mathematics, vol. 794], Springer-Verlag, New York, 1980, pp. 49–52.Google Scholar
  13. [13]
    Maharam, D. andStone, A. H.,Expressing measurable functions by one-one ones. Advances Math.46 (1982), 151–161.Google Scholar
  14. [14]
    Marcia, J. andSchönheim, J.,Incomplete diagonals of latin squares. Canad. Math. Bull.12 (1969), 235.Google Scholar
  15. [15]
    Oxtoby, J. C.,Measure and category, A survey of the analogies between topological and measure spaces. Springer Verlag, New York—Berlin, 1971.Google Scholar
  16. [16]
    Paige, L. J.,A note on finite abelian groups. Bull. Amer. Math. Soc.,53 (1947), 590–593.Google Scholar
  17. [17]
    Paige, L. J.,Complete mappings of finite groups. Pacific J. Math.1 (1951), 111–116.Google Scholar
  18. [18]
    Salzborn F. andSzekeres, G.,A problem in combinatorial group theory. Ars Combin.7 (1979), 3–5.Google Scholar
  19. [19]
    Szabó, S.,On finite abelian groups and parallel edges on polygons. Math. Magazine66 (1993), 36–39.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • J. H. B. Kemperman
    • 1
  • Teunis J. Ott
    • 1
  1. 1.Department of StatisticsRutgers UniversityNew BrunswickUSA

Personalised recommendations