Skip to main content
Log in

Average errors for zero finding: Lower bounds for smooth or monotone functions

  • Research Papers
  • Published:
aequationes mathematicae Aims and scope Submit manuscript

Summary

We study zero finding for functions fromC r([0, 1]) withf(0) ⋅f(1) < 0 and for monotone functions fromC([0, 1]). We show that a lower boundγ n with a constantγ holds for the average error of any method usingn function or derivative evaluations. Here the average is defined with respect to conditionalr-fold Wiemer measures or Ulam measures, and the error is understood in the root or residual sense. As in the worst case, we therefore cannot obtain superlinear convergence even for classes of smooth functions which have only simple zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, H.,Probability theory and elements of measure theory. Academic Press, New York, 1981.

    Google Scholar 

  2. Chay, S. C.,On quasi-Markov random fields. J. Multivariate Anal.2 (1972), 14–76.

    Google Scholar 

  3. Dowell, M. andJarrat, P.,The Pegasus method for computing the root of an equation. BIT12 (1971), 503–508.

    Google Scholar 

  4. Graf, S., Mauldin, R. D., andWilliams, S. C.,Random homeomorphisms. Adv. Math.60 (1986), 239–359.

    Google Scholar 

  5. Graf, S. andNovak, E.,The average error of quadrature formulas for functions of bounded variation. Rocky Mountain J. Math.20 (1990), 707–716.

    Google Scholar 

  6. Graf, S., Novak, E., andPapageorgiou, A.,Bisection is not optimal on the average. Numer. Math.55 (1989), 481–491.

    Google Scholar 

  7. King, R. F.,An improved Pegasus method for root finding. BIT13 (1973), 423–427.

    Google Scholar 

  8. Kung, H. T.,The complexity of obtaining starting points for solving operator equations by Newton's method. In:Analytic computational complexity (J. F. Traub, ed.). Academic Press, New York, 1976, pp. 35–57.

    Google Scholar 

  9. Lee, D. andWasilkowski, G. W.,Approximation of linear functionals on a Banach space with a Gaussian measure. J. Complexity2 (1986), 12–43.

    Google Scholar 

  10. Novak, E.,Average-case results for zero finding. J. Complexity5 (1989), 489–501.

    Google Scholar 

  11. Novak, E.,Quadrature formulas for monotone functions. Proc. Amer. Math. Soc.115 (1992), 59–68.

    Google Scholar 

  12. Novak, E. andRitter, K.,Average errors for zero finding: lower bounds. Math. Z.211 (1992), 671–686.

    Google Scholar 

  13. Novak, E. andRitter, K.,Some complexity results for zero finding for univariate functions. J. Complexity9 (1993), 15–40.

    Google Scholar 

  14. Pan, V.,Complexity of computations with matrices and polynomials. SIAM Review34 (1992), 225–262.

    Google Scholar 

  15. Parthasarathy, K. R.,Probability measures on metric spaces. Academic Press, New York, 1967.

    Google Scholar 

  16. Renegar, J.,On the efficiency of Newton's method in approximating all zeros of a system of complex polynomials. Math. Oper. Res.12 (1987), 121–148.

    Google Scholar 

  17. Sacks, J. andYlvisaker, D.,Statistical design and integral approximation. In:Proc. 12th Bienn. Seminar Can. Math. Congr. 1969 (R. Pyke, ed.). Can. Math. Soc., Montreal, 1970, pp. 115–136.

    Google Scholar 

  18. Shub, M. andSmale, S.,Complexity of Bezout's theorem I, II, III. Preprint, 1992.

  19. Sikorski, K.,Study of linear information for classes of polynomial equations. Aequationes Math.37 (1989), 1–14.

    Google Scholar 

  20. Sikorski, K.,Optimal solution of nonlinear equations. J. Complexity1 (1985), 197–209.

    Google Scholar 

  21. Smale, S.,On the efficiency of algorithms of analysis. Bull. Amer. Math. Soc., New Ser.,13 (1985), 87–121.

    Google Scholar 

  22. Smale, S.,Algorithms for solving equations. In:Proc. Intern. Congr. Math. 1986, Berkeley (A. M. Gleason, ed.). Amer. Math. Soc., Providence, 1987, pp. 115–136.

    Google Scholar 

  23. Speckman, P.,L p approximation of autoregressive Gaussian processes. Report, University of Oregon, Department of Statistics, Eugene, 1979.

    Google Scholar 

  24. Traub, J. F., Wasilkowski, G. W., andWoźniakowski, H.,Information-based complexity. Academic Press, New York, 1988.

    Google Scholar 

  25. Vakhania, N. N., Tarieladze, V. I., andChobanyan, S. A.,Probability distributions on Banach spaces. Reidel, Dordrecht, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, K. Average errors for zero finding: Lower bounds for smooth or monotone functions. Aeq. Math. 48, 194–219 (1994). https://doi.org/10.1007/BF01832985

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01832985

AMS (1991) subject classification

Navigation