Geologische Rundschau

, Volume 77, Issue 2, pp 591–607 | Cite as

Geology and mathematics: Progressing mathematization of geology

  • H. Schaeben

Abstract

Surveying the history of mathematical geology since the times of Lyell it is shown that its characteristic feature is that of interaction between a strongly historically inclined science and rather abstract mathematics/statistics. It is proven that mathematization of geology and experimental geology stimulate one another, and that mathematical geology can be of essential aid in formulating conceptual models and scientific theories to integrate and unify diverse geological phenomena.

Examples of the progressing mathematization of geology and the geosciences have been chosen to be most instructive for the purposes of understanding the general law of the development of science in the geosciences, as well as the propagation of mathematical models and their numerical realization. They range from almost conventional application of classical statistics in subdividing the Tertiary, to mathematical analysis of directional and orientation data vital to plate tectonics, deterministic and stochastic approaches for modeling and simulation purposes in characterization and management of natural resources, and the application of bifurcation theory to study differentiated layering as well as research in artificial intelligence and expert systems in exploration. All examples will be briefly presented and discussed, in general terms, avoiding all severe mathematics. Similarities and differences in the lawful development of geology, biology, and physics with respect to their mathematization are mentioned.

Zusammenfassung

Die Geschichte der mathematischen Geologie seit Lyell überschauend wird festgestellt, da\ ihr charakteristisches Merkmal das der Interaktion einer historisch orientierten Naturwissenschaft mit auf Abstraktion zielender Mathematik/Statistik ist. Es wird belegt, da\ Mathematisierung der Geologie und experimentelle Geologie sich gegenseitig vorantreiben und da\ mathematische Geologie zur Bildung von konzeptionellen Modellen und wissenschaftlichen Theorien, die unterschiedliche geologische Erscheinungen in Zusammenhang stellen, wesentlich beitragen kann.

Die hier vorgestellten Beispiele der fortschreitenden Mathematisierung der Geologie und der Geowissenschaften als Ganzes sind nach dem Kriterium ausgewählt, die allgemeine Gesetzmä\igkeit des Entwicklungsprozesses der Wissenschaften für die geologischen Wissenschaften besonders deutlich darzustellen, und mit der Absicht, mathematische Modelle und ihre numerische Realisierung zu verbreiten. Sie reichen von fast standardmä\iger Anwendung klassischer, statistischer Argumente zur Unterteilung des Tertiärs über die mathematische Analyse von Richtungs- und Orientierungsdaten, welche wesentlich zur Akzeptanz der Plattentektonik beitrug, und deterministische und stochastische Zugänge zur Modellierung und Simulation bei der Charakterisierung und Verwaltung natürlicher Ressourcen bis zur Anwendung der mathematischen Verzweigungstheorie bei der Untersuchung von differenziertem metamorphem Lagenbau und zur Forschung auf dem Gebiet der künstlichen Intelligenz und der Expertensysteme in der Exploration. Die Beispiele werden ohne mathematische Formulierungen diskutiert. Auf ähnlichkeiten und Unterschiede bei der gesetzmä\igen Entwicklung von Geologie, Biologie und Physik in bezug auf ihre Mathematisierung wird hingewiesen.

Résumé

Si on résume l'histoire de la géologie mathématique depuis Lyell, on constate que son trait caractéristique réside dans l'interaction d'une science (naturelle) à orientation historique avec une mathématique-statistique tendant à l'abstraction. Il est de fait que la mathématisation de la géologie et la géologie expérimentale se stimulent mutuellement et que la géologie mathématique peut aider de manière significative à l'élaboration de modèles conceptuels et de théories scientifiques qui tendent à intégrer et à unifier les divers phénomènes géologiques.

Les exemples présentés ici de ce processus de mathématisation progressive de la géologie et des sciences de la Terre ont été choisis pour Être les plus significatifs possible, afin d'en éclairer le développement et de justifier en mÊme temps le dessein de propager l'usage des modèles mathématiques et leur réalisation numérique. Le premier exemple concerne l'application, presque conventionnelle, de la statistique classique à la subdivision du Tertiaire. On poursuit par l'analyse mathématique des données de direction et d'orientation, vitales dans l'étude du modèle de la tectonique des plaques. Viennent ensuite les approches déterministes et stochastiques de l'élaboration et de la simulation en vue de caractériser et de gérer les ressources naturelles. Les exemples se poursuivent par l'application de la théorie mathématique de la bifurcation à l'étude du rubanement métamorphique et à la recherche dans le domaine de l'intelligence artificielle et des systèmes d'experts appliqués à l'exploration. Tous les exemples sont brièvement présentés et discutés, en termes généraux, à l'exclusion de formulation mathématique. On souligne les ressemblances et les différences entre les lois du développement de la géologie, de la biologie et de la physique en regard de leur mathématisation.

кРАткОЕ сОДЕРжАНИЕ

ИстОРИь МАтЕМАтИЧЕс кОИ гЕОлОгИИ сО ВРЕМЕ НИ Lyell'a хАРАктЕРИжУЕтсь Вж АИМОДЕИстВИЕМ ЕстЕс тВОжНАНИь И ИстОРИЧЕскИ АБстРА ктНО ОРИЕНтИРОВАННы х НАУк, кАк МАтЕМАтИкА И стАт ИстИкА.

НА пРИМЕРАх ДЕМОстРИ РУЕтсь жНАЧЕНИЕ МАтЕ МАтИкИ Дль ЁкспЕРИМЕНтАльН ОИ гЕОлОгИИ И пРОНИкН ОВЕНИЕ ЁтИх МАтЕМАтИЧЕскИх НАУк В гЕОлОгИУ, ЧтО сп ОсОБстВУЕт сОжДАНИУ МОДЕлЕИ И тЕ ОРИИ пРИ ИжУЧЕНИИ РАж лИЧНых гЕОлОгИЧЕскИх ьВлЕН ИИ И т.О. РАжРЕшАЕт ИжУЧ Ить цЕлыИ РьД ЁтИх гЕОлОг ИЧЕскИх ьВлЕНИИ. УспЕ шНОЕ пРИМЕНЕНИЕ ЁтИх МАтЕ МАтИЧЕскИх МЕтОДОВ Д ль ИжУЧЕНИь цЕлОгО РьДА гЕОлОгИЧ ЕскИх жАкОНОМЕРНОст ЕИ В гЕОлОгИИ пОДЧЕРкИВАЕтсь. пРИВ ЕДЕН цЕлыИ РьД МОДЕлЕ И, кОтОРыЕ спОсОБстВУУ т пРИМЕНЕНИУ Их В РАжл ИЧНых ОБлАстьх гЕОлОгИИ. НА пР.: ИжУЧЕНИЕ тЕктОНИк И плИт с пОМОЩьУ РАжРАБОтАНН ых МОДЕлЕИ, А тАкжЕ пРИ МЕНЕНИЕ ЁтИх МОДЕлЕИ пРИ Ёксп лОРАцИИ НА РАжлИЧНыЕ пОлЕжНыЕ ИскОпАЕМыЕ. ОпИсАННы Е жДЕсь пРИМЕРы ДАУтсь БЕж пРИМЕНЕНИ ь слОжНОгО МАтЕМАтИЧ ЕскОгО АппАРАтА.

В кОНцЕ пРИВЕДЕНы пРИ МЕРы пРИМЕНЕНИь МАтЕ МАтИкИ В ОБлАстИ гЕОлОгИИ, БИ ОлОгИИ И ДР. ЕстЕстВЕН Ных НАУк.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abstracts of the »Mathematical Geologists of the US« Conference on emerging concepts, Redwood City, California, USA, April 13–15, 1987.Google Scholar
  2. Abstracts of the 16th International Conference on mathematical geophysics, section D: Wave propagation in 3d-media and large scale inversion, Osterbeeb, The Netherlands, June 22–28, 1986.Google Scholar
  3. Agterberg, F. P. (1982): Recent developments in geomathematics. - Geo-Processing,2, 1–32.Google Scholar
  4. — (1974): Geomathematics. Mathematical background and geo-science application. - Amsterdam (Elsevier).Google Scholar
  5. Ahnert, F. (1981a): über die Beziehung zwischen quantitativen, semiquantitativen und qualitativen Methoden in der Geomorphologie. - Z. Geomorph. N. F., suppl.,39, 1–28.Google Scholar
  6. — (1981b): Stone rings from random walks. - Transactions Japanese Geomorphological Union,2, 301–312.Google Scholar
  7. Akin, H. &Siemes, H. (1988): Praktische Geostatistik — Eine Einführung für den Bergbau und die Geowissenschaften. 0- Heidelberg (Springer).Google Scholar
  8. Albritton, C. C. jr. (ed.) (1963): The fabric of geology. - Reading, Mass. (Addison-Wesley Publishing Company).Google Scholar
  9. Arnold, K. J. (1941): On spherical probability distributions. - Ph. D. Thesis, MIT.Google Scholar
  10. Avnir, D., Farin, D. &Pfeiffer, P. (1984): Molecular fractal surfaces. - Nature,308, 261–263.Google Scholar
  11. Bachmat, Y., Bredehoeft, J., Andrews, B., Holtz, D. &Sebastian, S. (1980): Groundwater management: the use of numerical models. - Washington, D.C. (Water Resources Monograph 5, American Geophysical Union).Google Scholar
  12. Baker, D. W. &Wenk, H. R. (1972): Preferred orientation in a low — symmetry quartz mylonite. - J. Geol.,80, 81–105.Google Scholar
  13. — —, &Christie, J. M. (1969): X-ray analysis of preferred orientation in fine grained quartz aggregates. - J. Geol.,77, 144–172.Google Scholar
  14. Batschelet, E. (1981): Circular statistics in biology. - New York (Academic Press).Google Scholar
  15. — (1965): Statistical methods for the analysis of problems in animal orientation and certain biological rhythms. - Washington (Amer. Inst. Biol. Sciences).Google Scholar
  16. Bear, J. (1979): Hydraulics of groundwater. - New York (McGraw-Hill).Google Scholar
  17. — (1972): Dynamics of fluids in porous media. - New York (Elsevier).Google Scholar
  18. Bingham, C. (1964): Distributions on the sphere and the projective plane. - Ph. D. Thesis, Yale University.Google Scholar
  19. Bohle-Carbonell, M., Booss, B. &Jensen, J. H. (1983): Innermathematical vs. extramathematical obstructions to model credebility. - in:Avula, X. J. R., Kalman, R. E., (eds.), Proc. 4th International Conference on Mathematical Modelling, Zürich, Aug. 15–17, 1983, Oxford (Pergamon Press).Google Scholar
  20. Booss-Bavnbek, B. &Bohle-Carbonell, M. (1987): Machbarkeit nichtbeherrschbarer Technik durch Fortschritte in der Erkennbarkeit der Natur. - Roskilde (IM-FUFA tekst 139).Google Scholar
  21. Booss, B. &Krickeberg, K., (eds.) (1976): Mathematisierung der Einzelwissenschaften. - Basel (Birkhäuser Verlag).Google Scholar
  22. Bramer, M. A. (1982): A survey and critical review of expert systems research. - in: Michie, D., (ed.), Introductory reading in expert systems, 3–21, London (Gordon and Breach).Google Scholar
  23. Breitenberger, E. (1963): Analogues of the normal distribution on the circle and the sphere. - Biometrika,50, 81–88.Google Scholar
  24. Bubnoff, S. v., Cloos, H. &Wagner, G. (1943): Warum Geologie? - Beitr. Geol. Thü ringen,7, 191–205.Google Scholar
  25. Buchanan, B. G. (1986): Expert systems: Working systems and research literature. - Expert Systems,3, 32–77.Google Scholar
  26. Bunge, H. J. (1969): Mathematische Methoden der Texturanalyse. - Berlin (Akademie Verlag).Google Scholar
  27. Burns, K. L. (1975): Analysis of geological events. - Math. Geol.,7, 295–321.Google Scholar
  28. Chain, W. E. (1970): Vollzieht sich in der Geologie eine wissenschaftliche Revolution. - Zeitschrift für angewandte Geologie,16, 437–449.Google Scholar
  29. Charney, J. G., Fjörtoft, R. &Neumann, J. v. (1950): Numerical integration of the barotropic vorticity equation. - Tellus,2, 237–254.Google Scholar
  30. Chayes, F. (1949): Statistical analysis of three dimensional fabric diagrams. - in: Fairbairn, H. W., Structural petrology of deformed rocks, Cambridge, Mass. (Addison-Wesley Publ. Comp.).Google Scholar
  31. — (1946): Application of the coefficient of correlation to fabric diagrams. - Am. Geophys. Union Trans.,27, 400–405.Google Scholar
  32. Clark, I. (1979): Practical geostatistics. - London (Applied Science Publishers).Google Scholar
  33. Cloos, H. (1939): Hebung — Spaltung — Vulkanismus. - Geol. Rdschau,30, 401–525, 637–640.Google Scholar
  34. Cohen, M. H. (1982): Topology, geometry, and physical properties of porous rocks. - in: Burridge, R., Childress, S., Papanicolaou, G., (eds.), Macroscopic properties of disordered media, Proceedings of a Conference held at the Courant Institute, June 1–3, 1981, Berlin (Springer Verlag).Google Scholar
  35. Craig, R. G. &Labovitz, M. L. (eds.) (1981): Future trends in geomathematics. - London (Pion Ltd.).Google Scholar
  36. Creer, K. M. (1983): Computer synthesis of geomagnetic paleosecular variations. - Nature,3, 695–699.Google Scholar
  37. Cubitt, J. M. (1987): Book review. - Math. Geol.19, 361–362.Google Scholar
  38. —,Shaw, B. (1976): The geological implications of steady-state mechanisms in catastrophy theory. - Math. Geol.,8, 657–662.Google Scholar
  39. —,Henley, S. (1978): Statistical analysis in geology. - New York (Academic Press).Google Scholar
  40. Daber, R. &Guntau, M. (1979): Gedanken der Klassiker des Marxismus zu Grundfragen der Geologie. - Z. geol. Wiss.,7, 87–92.Google Scholar
  41. David, M. (1977): Geostatistical ore reserve estimation. - Amsterdam (Elsevier.Google Scholar
  42. Davis, J. C. (1973): Statistics and data analysis in geology. - New York (Wiley).Google Scholar
  43. Dines, K. A. &Lytle, R. J. (1979): Computerized geophysical tomography. - Proc. IEEE,67, 1065–1073.Google Scholar
  44. Domenico, P. A. (1972): Concepts and models in ground-water hydrology. - New York (McGraw-Hill).Google Scholar
  45. Dubrule, O. (1984): Comparing splines and kriging. - Computers and Geosciences,10, 327–338.Google Scholar
  46. — (1983): Two methods with different objectives: splines and kriging. - Math. Geol.,15, 245–257.Google Scholar
  47. —,Kostov, C. (1986): An interpolation method taking into account inequality constraints: I. Methodology. - Math. Geol.,18, 33–51. II. Practical approach. - Math. Geol.,18, 53–73.Google Scholar
  48. Dudley, R. M., Perkins, P. C. &Evarist, G. M. (1975): Statistical tests for preferred orientation. - J. Geol.,83, 685–705.Google Scholar
  49. Engelhardt, W. v. (1974): Die Geowissenschaften und ihre Bedeutung für die Zukunft der Zivilisation. - Geol. Rdschau,63, 793–819, Stuttgart.Google Scholar
  50. Fenner, P., (ed.) (1969): Models of geologic processes — an introduction to mathematical geology. - AGI/CEGS short course, 7–9 November, Philadelphia, Washington, D.C. (American Geological Institute).Google Scholar
  51. Fisher, N. I., Lewis, T. &Embleton, B. J. J. (1986): Statistical analysis of spherical data.- London (Cambridge University Press).Google Scholar
  52. Fisher, R. A. (1953a): The expansion of statistics. - J. Roy. Stat. Soc. ser. A116, 2–3.Google Scholar
  53. — (1953b): Dispersion on a sphere. - Proc. Roy. Soc. ser. A217, 295–305.Google Scholar
  54. Flinn, D. (1985): On tests of significance of preferred orientation in three-dimensional fabric diagrams. - J. Geol.,66, 526–539.Google Scholar
  55. Freeze, R. A. (1966): Theoretical analysis of regional groundwater flow. - Ph. D. thesis, UC Berkeley.Google Scholar
  56. — (1969): Theoretical analysis of regional groundwater flow. - Ottawa (Inland Waters Branch, Department of Energy, Mines and Resources).Google Scholar
  57. —,Cherry, J. A. (1979): Groundwater. - Englewood Cliffs, NJ (Prentice Hall).Google Scholar
  58. —,Witherspoon, P. A. (1966): Theoretical analysis of regional groundwater flow: 1. Analytical and numerical solutions to the mathematical model. - Water Resources Research,2, 641–656.Google Scholar
  59. —,Witherspoon, P. A. (1967): Theoretical analysis of regional groundwater flow: 2. Effect of water table configuration and subsurface permeability variation. - Water Resources Research,3, 623–634.Google Scholar
  60. —,Witherspoon, P. A. (1968): Theoretical analysis of regional groundwater flow: 3. Quantitative Interpretations. - Water Resources Research,4, 581–590.Google Scholar
  61. Gil Sevilland, J., Van Houtte, P. &Aernoudt, E. (1980): Large strain work hardening and textures. 5. Geometrical models for polycrystal deformation and texture prediction. - Prog. Mat. Sci.,25, 272–341.Google Scholar
  62. Guntau, M. (1966): Einflüsse des Neukantianismus auf Gedankengänge in den geologischen Wissenschaften.- Dt. Zt. Philos.,14, 93–102.Google Scholar
  63. — (1963a): Bemerkungen zum Aktualismus in der Geologie. - Ber. geol. Ges. DDR,8, 377–389.Google Scholar
  64. — (1963b): Zum Problem der Klassifizierung der geologischen Wissenschaften. - Ber. geol. Ges. DDR,8, 5–29.Google Scholar
  65. Harbaugh, J. W. &Bonham-Carter, G. (1970): Computer simulation in geology. - New York (Wiley-Interscience).Google Scholar
  66. Hayes-Roth, F. (1984): The knowledge based expert system: a tutorial. - IEEE Computer 17 (9'84), 11–28.Google Scholar
  67. Hazewinkel, M. (1984): Experimental mathematics. - Amsterdam (Report PM-R8411, Centrum voor Wiskunde en Informatica).Google Scholar
  68. Helms, H. G. (1984): Künstliche Intelligenz? Maschinen, die denken? - Blätter f. deutsche und internationale Politik 3'84, 334–354.Google Scholar
  69. Henley, S. (1976): Catastrophy models in geology. - Math. Geol.,8, 649–655.Google Scholar
  70. Herman, G. T. (1980): Image reconstruction from projections. - the fundamentals of computerized tomography. - New York (Academic Press).Google Scholar
  71. Hinkelmann, K.-H. (1976): Erdwissenschaft und Mathematik: Probleme der numerischen Wettervorhersage. - in: Boo\, B., Krickeberg, K., (eds.) (1976): Mathematisierung der Einzelwissenschaften, Basel (Birkhauser Verlag).Google Scholar
  72. Hospers, J. (1955): Rock magnetism and polar wandering. - J. Geol.,63, 59–74.Google Scholar
  73. Hubbert, M. K. (1977): Role of geology in transition to a mature industrial society. - Geol. Rdschau,66, 654–678, Stuttgart.Google Scholar
  74. — (1940): The theory of groundwater motion. - J. Geol.,48, 785–944.Google Scholar
  75. Huyakorn, P. S. &Pinder, G. F. (1983): Computational methods in subsurface flow. - New York (Academic Press).Google Scholar
  76. Irving, E. &Ward, M. A. (1964): A statistical model of the geomagnetic field. - Pure and Applied Geophys.,57, 47–52.Google Scholar
  77. Isaaks, E. H. &Srivastava, R. M. (1987): Spatial continuity measures for probabilistic and deterministic geostatistics. - Preprint, paper presented at the MGUS '87 Conference held at Redwood City, CA, April 13–15, 1987.Google Scholar
  78. Jebrak, M. &Loesener, C. (1987): Systemes-experts et geologie. - Geochronique,22, 12–15.Google Scholar
  79. Journel, A. G. (1987): New distance measures: the route towards truly non-gaussian geostatistics. - Preprint, paper presented at the MGUS '87 Conference held at Redwood city, CA, April 13–15, 1987.Google Scholar
  80. — (1986a): Constrained interpolation and qualitative information — the soft kriging approach.- Math. Geol.,18, 269–286.Google Scholar
  81. — (1986b): Geostatistics — models and tools for the earth sciences. - Math. Geol.,18, 119–140.Google Scholar
  82. — (1985): The deterministic side of geostatistics. - Math. Geol.,17, 1–15.Google Scholar
  83. —,Huijbregts, C. (1978): Mining geostatistics. - London (Academic Press).Google Scholar
  84. Kaden, S. &Luckner, L. (1984): Groundwater management in open-pit lignite mining areas. - International Symposium on Groundwater Resources Utilization and Contaminant Hydrogeology, Proceedings 1, Montreal, Quebec, Canada, May 1984, compiled by R. Pearson, 69–78.Google Scholar
  85. Kamb, W. B. (1959): Ice petrofabric observations from Blue Glacier Washington, in relation to theory and experiment. - J. Geophys. Res.,64, 1891–1909.Google Scholar
  86. Koch, G. S. &Link, R. F. (1971): Statistical analysis of geological data, vol 1. - New York (J. Wiley & Sons).Google Scholar
  87. — — (1970):Statistical analysis of geological data, vol. 2. - New York (J. Wiley & Sons).Google Scholar
  88. Krumbein, W. C. (1939): Preferred orientation of pebbles in sedimentary deposits. - J. Geol.,47, 673–706.Google Scholar
  89. —,Graybill, F. A. (1965): An introduction to statistical models in geology. - New York (McGraw-Hill).Google Scholar
  90. Lichtner, P. C. (1985): Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems.- Geochimica et Cosmochimica Acta,49, 779–800.Google Scholar
  91. —,Helgeson, H. C. &Murphy, W. M. (1987): Lagrangian and Eulerian representations of metasomatic alteration of minerals. — Preprint, Department of Geology and Geophysics, UC Berkeley.Google Scholar
  92. Ligett, J. L. &Liu, P. L.-F. (1980): The boundary integral equation method for porous media flow.- London (George Allen &Unwin).Google Scholar
  93. Lin, J. S. &Wong, P.-Z. (1987): Small-scale neutron scattering study of the fractal character of some geological materials. - Preprint, paper presented at the MGUS '87 Conference held at Redwood City, CA, April 13–15, 1987.Google Scholar
  94. Louden, T. V. (1979): Computer methods in geology. - New York (Academic Press).Google Scholar
  95. Lyell, C. (1830–33): Principles of geology. - London (John Murray).Google Scholar
  96. Mandelbrot, B. B. (1982): The fractal geometry of nature. - San Francisco (W. H. Freeman &Comp.).Google Scholar
  97. Mardia, K. V. (1972): Statistics of directional data. - London (Academic Press).Google Scholar
  98. Marsal, D. (1979): Statistische Methoden für Erdwissenschaftler. - Stuttgart (E. Schweizerbart'sche Verlagsbuchhandlung).Google Scholar
  99. Marsily, G. d. (1986): Quantitative hydrogeology. - Orlando (Academic Press).Google Scholar
  100. Mathematical Geology and geological information. - Proc. 27th Internatl. Geol. Congress, Moscow 4–14. Aug. 1984, 20, Utrecht (VNU Science Press).Google Scholar
  101. Matheron, G. (1981): Splines and kriging: their formal equivalence. - in: Merriam, D. F., (ed.), Down to earth statistics: solutions looking for geological problems. - Syracuse University Geology Contribution,8, 17–27.Google Scholar
  102. — (1978): Estimer et choisier. - Fontainebleau (ENS des Mines de Paris).Google Scholar
  103. - (1971): The theory of regionalized variables and its applications. - Fontainebleau (Les cahiers du centre de morphologie mathematique de Fontainebleau 5).Google Scholar
  104. — (1963): Principles of geostatistics. - Econ. Geol.,58, 1246–1266.Google Scholar
  105. Maxwell, J. C. (1873): Treatise on electricity and magnetism. - Oxford (Clarendon).Google Scholar
  106. — (1865): Dynamical theory of the electromagnetic field. - also 1982, Edinburgh (Scottish Acad. Press).Google Scholar
  107. McCammon, R. B. (1980): Mathematical geology. - Geotimes 2'80, 35–36.Google Scholar
  108. McCammon, R. B. (ed.) (1975): Concepts in geostatistics. - New York (Springer).Google Scholar
  109. McDermott, J. (1982): First profit oriented expert systems. - Technology 2'82, 66–73.Google Scholar
  110. McElhinny, M. W. (1973): Paleomagnetism and plate tectonics. - London (Cambridge University Press).Google Scholar
  111. Mellis, O. (1942): Gefügediagramm in stereographischer Projektion. - Tscherm. Min. Petr. Mitt.,53, 330–353.Google Scholar
  112. Mercer, J. W. &Faust, C. R. (1981): Groundwater modeling. - Washington, Ohio (Natl. Water Well Assoc).Google Scholar
  113. Merino, E. &Ortoleva, P. (1980): Temporal development of fabric in uniaxially stressed polycrystalline media. - Contrib. Mineral. Petrol.,71, 429–435.Google Scholar
  114. — — &Strickholm, P. (1983): Generation of evenly-spaced pressure-solution seams during (late) diagenesis: a kinetic theory. - Contrib. Mineral. Petrol.,82, 360–370.Google Scholar
  115. Merriam, D. F. (1981): Roots of quantitative geology. - in: Merriam, D. E, (ed.), Down to earth statistics: solutions looking for geological problems. - Syracuse University Geology Contribution,8, 1–15.Google Scholar
  116. -, (ed.) (1978): Geomathematics: Past, present, and prospects. - Syracuse University Geology Contribution 5.Google Scholar
  117. -, (ed.) (1974): The impact of quantification on geology — Syracuse University Geology Contribution 2.Google Scholar
  118. —, (ed.) (1970): Geostatistics — a colloquium. - Proceedings of a colloquium held on campus at The University of Kansas, Lawrence on 7–9 June 1970, New York (Plenum Press).Google Scholar
  119. —, (ed.) (1969): Computer applications in the earth sciences — an international symposium.- Proceedings of a conference on the state of the art held on campus at the University of Kansas, Lawrence on 16–18 June 1969, New York (Plenum Press).Google Scholar
  120. Müller, L. (1933): Untersuchungen über statistische Kluftmessung. - Geol. und Bau 5, 187–255.Google Scholar
  121. Nicolis, G. &Prigogine, I. (1977): Self-organization in non-equilibrium systems. - New York (Wiley).Google Scholar
  122. Okubo, P. &Aki, K. (1987): Fractal geometry in the San Andreas fault system. - J. Geophys. Research,92, 345–355.Google Scholar
  123. Ortoleva, P., Merino, E. &Strickholm, P. (1982): Kinetics of metamorphic layering in anisotropically stressed rocks. - American Journal of Science,282, 617–643.Google Scholar
  124. Pape, H.,Riepe, L. &Schopper, J. R. (1981): Calculating permeability from surface area measurements. - Trans. 7th Europ. Logging Symp., Paris, 1–11.Google Scholar
  125. Parzen, E. (1979): A density-quantile function perspective on robust estimation. - in: Lammer, R. L., Wilkinson, G. N. (eds.), Robustness in statistics, 237–258, New York (Academic Press).Google Scholar
  126. — (1977): Nonparametric statistical data science (a unified approach based on density estimation and testing for »white noise»). Buffalo, NY (Technical report 47, Statistical Science Division, SUNY).Google Scholar
  127. Patankar, S. V. (1980): Numerical heat transfer and fluid flow. - New York (McGraw-Hill).Google Scholar
  128. Paterson, M. S. (1976): Some current aspects of experimental rock deformation. - Phil. Trans. R. Soc. London ser. A283, 163–172.Google Scholar
  129. Pennink, J. M. K. (1905): Over de beweging van grondwater. - De Ingenieur30, 482–492.Google Scholar
  130. Peterson, I. (1984): Superproblems for supercomputers. - Science News126, 200–203.Google Scholar
  131. Pfeiffer, P. (1984): Fractal dimension as working tool for surface-roughness problems. - Appl. Surface Sciences,18, 146–164.Google Scholar
  132. Pincos, H. J. (1953): The analysis of aggregates of orientation data in the earth sciences. - J. Geol.,61, 482–509.Google Scholar
  133. — (1951): Statistical methods applied to the study of rock fractures. - Geol. Soc. Am. Bull.,62, 81–130.Google Scholar
  134. Pinder, G. F. &Gray, W. G. (1977): Finite element simulation in surface and subsurface hydrology. - New York (Academic Press).Google Scholar
  135. Prigogine, I. (1979): Vom Sein zum Werden. - München (Piper & Co.Verlag).Google Scholar
  136. Read, H. H. (1952): The geologist as historian. - in: Scientific objectives, 52–67, London (Butterworths Scient. Publs.).Google Scholar
  137. Remson, I., Hornberger, G. M. &Molz, F. J. (1971): Numerical methods in subsurface hydrology.- New York (J. Wiley and Sons).Google Scholar
  138. Rendu, J. M. (1978): An introduction to geostatistical methods of mineral evaluation. - Johannesburg (South African Institute of Mining and Mineralogy).Google Scholar
  139. Richardson, L. F. (1961): The problem of contiguity. - An appendix of statistics of deadly quarrels, General Systems Yearbook,6, 139–187.Google Scholar
  140. — (1922): Weather prediction by numerical methods. - London (Cambridge University Press); also Dover edition (1965): New York (Dover Publication, Inc.).Google Scholar
  141. Royle, A. G. (1971/75): A practical introduction to geostatistics (Course Manuscript, 3 Parts including geostatistical tables and exercises in geostatistics). Leeds (Department of Mining and Mineral Sciences, The University of Leeds).Google Scholar
  142. Salkauskas, K. (1982): Some relationships between surface splines and kriging. - in: Schempp, W., Zeller, K. (eds.), Multivariate approximation theory II, 313–325, Proceedings of the conference held at the Mathematical Research Institute at Oberwolfach, W-Germany, Feb. 8–12 (1982), Basel (Birkhäuser Verlag).Google Scholar
  143. Sard, A. (1982): A view of mathematics.-in: Schempp, W., Zeller, K. (eds.), Multivariate approximation theory II, 327–330, Proceedings of the conference held at the Mathematical Research Institute at Oberwolfach, W-Germany, Feb. 8–12 (1982), Basel (Birkhäuser Verlag).Google Scholar
  144. Schaeben, H. (1984a): Mathematical modeling of the orientation distribution function by the vector method of quantitative texture analysis. - phys. stat. sol. (b)132, 425–434.Google Scholar
  145. — (1984b), Introducing a conditional ghost correction into the vector method. - Textures and Microstructures,6, 117–124.Google Scholar
  146. - (1981): Mathematische Methoden der Analyse von Richtungsgefügen. - Diss., Aachen.Google Scholar
  147. Scheidegger, A. E. (1979): The principle of antagonism in the Earth's evolution. - Tectonophysics,55, T7-T10.Google Scholar
  148. — (1960): Mathematical methods in geology. - Am. J. Sci.,258, 218–221.Google Scholar
  149. Schmid, S. M. &Casey, M. (1986): Complete fabric analysis of some commonly observed quartz c-axis patterns. - in: Mineral and rock deformation: Laboratory studies — the Patterson volume, Geophysical Monograph 36, American Geophysical Union.Google Scholar
  150. Schmidt, W. (1925): Gefügestatistik. - Tscherm. Min. Petr. Mitt.,38, 392–423.Google Scholar
  151. Scholz, C. H. &Aviles, C. A. (1986): The fractal geometry of faults and faulting. - Earthquake Source Mechanics, Geophysical Monograph 37, (Maurice Ewing 6), American Geophysical Union.Google Scholar
  152. Schwarzacher, W. (1975): Sedimentation models and quantitative stratigraphy. - Amsterdam (Elsevier).Google Scholar
  153. Sen, P. N. (1982): Dielectric and acoustic response of rocks. - in: Burridge, R., Childress, S., Papanicolaou, G., (eds.), Macroscopic properties of disordered media, Proceedings of a Conference held at the Courant Institute, June 1–3 (1981): Berlin (Springer Verlag).Google Scholar
  154. Siemes, H. (1977): Fabric analysis and fabric development in ores. - Geol. För. Förhandl.,99, 172–185.Google Scholar
  155. —,Spangenberg, H. (1980): Shear fabrics of naturally deformed galena. - J. Struct. Geol.,2, 235–241.Google Scholar
  156. Stauffer, M. R. (1966): An empirical-statistical study of three-dimensional fabric diagrams as used in structural geology.- Can. J. Earth Sci.,3, 473–498.Google Scholar
  157. Steinmetz, R. (1962): Analysis of vectorial data. - Jour. Sediment. Petr.,32, 801–812.Google Scholar
  158. Strand, T. (1944): A method of counting out petrofabric diagrams. - Norsk. Geol. Tidsskrift,24, 112–113.Google Scholar
  159. Strickholm, P.,Merino, E. &Ortoleva, P. (1987): The self organization of differentiated layering. - preprint, submitted to J. Geophys. Research.Google Scholar
  160. Tarantola, A. &Valette, B. (1982): Generalized nonlinear inverse problems solved using the least squares criterion. - Review of Geophysics and Space Physics,20, 219–232.Google Scholar
  161. Thom, R. (1975): Structural stability and Morphogenesis. - Reading, Mass (The Benjamin/Cummings Publishing Comp.).Google Scholar
  162. TNO commission for hydrological research (1978): Groundwater models and numerical computer software. - The Hague (Report of the TNO ad hoc group, 2a).Google Scholar
  163. Tomkeieff, S. I. (1947): Analytical geology. - Nature,160, 846–847.Google Scholar
  164. Toth, J. (1972): Properties and manifestations of regional groundwater flow. - 24th IGC, Section,11, 153–163.Google Scholar
  165. Turcotte, D. L. (1986a): A fractal approach to the relationship between ore grade and tonnage. - Economic Geology,81, 1528–1532.Google Scholar
  166. - (1986b): A fractal model for crustal deformation. - in: Johnson, B., Bally, A. W., (eds.), Intraplate deformation. - Characteristics, processes, and causes, Tectonophysics,132, 261–269.Google Scholar
  167. Vinken, R. (1986): Digital geoscientific maps: A priority program of the German society for the advancement of scientific research. - Math. Geol.,18, 237–246.Google Scholar
  168. Vistelius, A. B. (1980): Principles of mathematical geology. - Moscow (Nauka).Google Scholar
  169. — (1976a): Mathematical geology and the progress of geological sciences. - J. Geol.,84, 629–651.Google Scholar
  170. — (1976b): Mathematical geology and development of the geological sciences. - Math. Geol.,8, 3–8.Google Scholar
  171. — (1968): Mathematical geology. — a report of progress. - Geocom. Bull.,1, 229–264.Google Scholar
  172. — (1967): Studies in mathematical geology. - New York (Consultants Bureau).Google Scholar
  173. — (1966): Structural diagrams. - New York (Pergamon Press).Google Scholar
  174. Wagner, F., Wenk, H. R., Esling, C. &Bunge, H. J. (1981): Importance of odd coefficients in texture calculations for trigonal-triclinic symmetries. - phys. stat. sol. (a),67, 269–285.Google Scholar
  175. Wang, H. F. &Anderson, M. P. (1982): Introduction to groundwater modeling. - Finite difference and finite element methods. - San Francisco (W. H. Freeman &Comp.).Google Scholar
  176. Watson, G. S. (1984): Smoothing and interpolation by kriging and with splines. - Math. Geol.,16, 601–615.Google Scholar
  177. — (1983): Statistics on spheres. - New York (J. Wiley & Sons).Google Scholar
  178. — (1982): The estimation of paleomagnetic pole positions. - in: Kallianpur, G., Krishnaiah, P. R., Ghosh, J. K., (eds.), Statistics and probability: Essays in honor of C. R. Rao, 703–712, Amsterdam (North Holland Publishing Company).Google Scholar
  179. -: The interaction of statistics and geology — finite deformations. - in: Merriam, D. F., (ed.), Down to earth statistics: solutions looking for geological problems, Syracuse University Geology Contribution,8, 17–27.Google Scholar
  180. — (1970): Orientation statistics in the erath sciences. - Bull. geol. Instn. Univ. Upsala,2, 73–89.Google Scholar
  181. —,Irving, E. (1957): Statistical methods in rock magnetism. - N. M. Roy Astr. Soc., Geophys. Suppl.,7, 289–300.Google Scholar
  182. Webster, R. &Miner, L. (1982): Expert systems. - programming problem-solving. - Technology 2'82, 62–65.Google Scholar
  183. Weisburd, S. (1985a): Fractals, fractures and faults. - Science News127, 279.Google Scholar
  184. — (1985b): Halos of stones. - Science News,127, 42–44.Google Scholar
  185. Wenk, H. R., (ed.) (1985): Preferred orientation in deformed metals and rocks. — An introduction to modern texture analysis. - Orlando, Florida (Academic Press).Google Scholar
  186. — (1979): Some roots of experimental rock deformation. - Bull. Mineral.,102, 195–202.Google Scholar
  187. —,Trommsdorf, V. (1965): Koordinatentransformation, mittelbare Orientierung, Nachbarwinkelstatistik. Gefügekundhche Rechenprogramme mit Beispielen. - Beitr. Min. Petr.,11, 559–585.Google Scholar
  188. -,Wilde, W. R. (1972): Orientation distribution diagrams for three Yule Marble fabrics. - in: Heard, H. C., Borg, I. Y., Carter, N. L., Raleigh, C. B., (eds.), Flow and fracture of rock — The Griggs Volume, Geophysical Monograph 16, American Geophysical Union, 191–209.Google Scholar
  189. -,Wagner, F.,Esling, C.,Bunge, H. J., Texture representation of deformed dolomite rocks. - Tectonophysics,79, 119–138.Google Scholar
  190. Whitten, E. H. T. (1984): Objectives of mathematical geology. - in: Mathematical Geology and geological information, Proc. 27th Internatl. Geol. Congress, Moscow 4 – 14 Aug 1984,20, Utrecht (VNU Science Press).Google Scholar
  191. — (1983): Twenty-five years of mathematical geology. - A new threshold. - Math. Geol.,15, 237–243.Google Scholar
  192. Winchell, H. (1937): A new method of interpretation of petrofabric diagrams. - Am. Min.,22, 15–36.Google Scholar
  193. Zabusky, N. J. (1984): Computational synergetics. - Physics Today,37, 36–46.Google Scholar
  194. — (1981): Computational synergetics and mathematical innovation. - J. Comput. Phys.,43, 195–249.Google Scholar

Copyright information

© Ferdinand Enke Verlag Stuttgart 1988

Authors and Affiliations

  • H. Schaeben
    • 1
  1. 1.Department of GeologyBonn UniversityBonn 1West Germany

Personalised recommendations