Skip to main content
Log in

Rep-tiling Euclidean space

  • Survey Papers
  • Published:
aequationes mathematicae Aims and scope Submit manuscript

Summary

Arep-tiling ℐ is a self replicating, lattice tiling ofR n.Lattice tiling means a tiling by translates of a single compact tile by the points of a lattice, andself-replicating means that there is a non-singular linear mapø: R n → Rn such that, for eachT ∈ ℐ, the imageø(T) is, in turn, tiled by ℐ. This topic has recently come under investigation, not only because of its recreational appeal, but because of its application to the theory of wavelets and to computer addressing. The paper presents an exposition of some recent results on rep-tiling, including a construction of essentially all rep-tilings of Euclidean space. The construction is based on radix representation of points of a lattice. One particular radix representation, called thegeneralized balanced ternary, is singled out as an example because of its relevance to the field of computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandt, C.,Self-similar sets 5. Integer matrices and fractal tilings of ℝ n. Proc. Amer. Math. Soc.112 (1991), 549–562.

    Google Scholar 

  2. Barnsley, M.,Fractals everywhere. Academic Press, Boston, 1988.

    Google Scholar 

  3. Dekking, F. M.,Recurrent sets. Adv. Math.44 (1982), 78–104.

    Google Scholar 

  4. Dekking, F. M.,Replicating superfigures and endomorphisms of free groups. J. Combin. Theory Ser. A32 (1982), 315–320.

    Google Scholar 

  5. Gelbrich, G.,Crystalloagraphic reptiles. Preprint.

  6. Gibson L. andLucas, D.,Spatial data processing using generalized balanced ternary. InProceedings of the IEEE Computer Society Conference on Pattern Recognition and Image Processing. IEEE Computer Society, New York, 1981, pp. 566–571.

    Google Scholar 

  7. Gilbert, W. J.,Fractal geometry derived from complex bases. Math. Intelligencer4 (1982), 78–86.

    Google Scholar 

  8. Gilbert, W. J.,Geometry of radix representations. InThe geometric vein: the Coxeter festscrift. Springer, New York—Berlin, 1981, pp. 129–139.

    Google Scholar 

  9. Gilbert, W. J.,Radix representations of quadratic fields. J. Math. Anal. Appl.83 (1981), 264–274.

    Google Scholar 

  10. Giles, J.,Construction of replicating superfigures. J. Combin. Theory Ser. A26 (1979), 328–334.

    Google Scholar 

  11. Girault-Bauquier F. andNivat, M.,Tiling the plane with one tile. InTopology and category theory in computer science (G. M. Reed, A. W. Roscoe and R. F. Wachter, eds.), Oxford Univ. Press, 1989, pp. 291–333.

  12. Golomb, S. W.,Replicating figures in the plane. Math. Gaz.48 (1964), 403–412.

    Google Scholar 

  13. Gröchenig K. andMadych, W. R.,Multiresolution analysis, Haar bases and self-similar tilings of ℝ n. IEEE Trans. Inform. Theory38 (1992), 556–568.

    Google Scholar 

  14. Gröchenig K. andHaas, A.,Self-similar lattice tilings. Preprint.

  15. Grünbaum, B. andShephard, G. C.,Tilings and patterns. W. H. Freeman and Company, New York, 1987.

    Google Scholar 

  16. Kátai, I. andSzabó, J.,Canonical number systems for complex integers. Acta Sci. Math. (Szeged)37 (1975), 255–260.

    Google Scholar 

  17. Kenyon, R.,Self-replicating tilings. InSymbolic dynamics and its applications (P. Walters, ed.). [Contemp. Math., Vol. 135]. Birkhäuser, Boston, 1992, pp. 239–264.

    Google Scholar 

  18. Kitto, W., Vince A. andWilson, D.,An isomorphism between the p-adic integers and a ring associated with a tiling of n-space by permutohedra. Discrete Appl. Math.52 (1994), 39–51.

    Google Scholar 

  19. Knuth, D. E.,The art of computer programming, Vol. 2, Seminumerical algorithms. 2nd ed. Addison-Wesley, Reading, Mass., 1981.

    Google Scholar 

  20. Lagarias, J. C. andWang, Y.,Self-affine tiles inn. Preprint.

  21. Lagarias, J. C. andWang, Y.,Integral self-affine tiles inn:Standard and nonstandard digit sets, II. Lattice tiling. Preprint.

  22. Lagarias, J. C. andWang, Y.,Tiling the line with one tile. Preprint.

  23. Lawton, W. andReesnikoff, H. L.,Multidimensional wavelet bases. Preprint.

  24. Mandelbrot, B. B.,The fractal geometry of nature. Freeman, San Francisco, 1982.

    Google Scholar 

  25. Matula, D. W.,Basic digit sets for radix representations. J. Assoc. Comput. Mach.4 (1982), 1131–1143.

    Google Scholar 

  26. Odlyzko, A. M.,Non-negative digit sets in positional number systems. Proc. London Math. Soc.37 (1978), 213–229.

    Google Scholar 

  27. Penrose, R.,Pentaplexity. Math. Intelligencer2 (1979), 32–37.

    Google Scholar 

  28. Radin, C.,Symmetry of tilings of the plane. Bull. Am. Math. Soc.29 (1993), 213–217.

    Google Scholar 

  29. Van Roessel, J. W.,Conversion of Cartesian coordinates from and to generalized balanced ternary addresses. Photogrammetric Eng. Remote Sensing54 (1988), 1565–1570.

    Google Scholar 

  30. Shechtman, D., Blech, I., Gratias, D. andCahn, J.,Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett.53 (1984), 1951–1954.

    Google Scholar 

  31. Strichartz, R. S.,Wavelets and self-affine tilings. Constructive Approx.9 (1993), 327–346.

    Google Scholar 

  32. Thurston, W.,Groups, tilings and finite state automata. [AMS Colloquium Lecture Notes]. Amer. Math. Soc., Providence, RI, 1989.

    Google Scholar 

  33. Venkov, B. A.,On a class of Euclidean polyhedra. Vestnik Leningrad. Univ. Mat. Fiz. Khim.9 (1954), 11–31 (Russian).

    Google Scholar 

  34. Vince, A.,Replicating tessellations. SIAM J. Discrete Math.6 (1993), 501–521.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vince, A. Rep-tiling Euclidean space. Aeq. Math. 50, 191–213 (1995). https://doi.org/10.1007/BF01831118

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01831118

AMS (1991) subject classification

Navigation