Skip to main content
Log in

Progress of iteration theory since 1981

  • Survey Papers
  • Published:
aequationes mathematicae Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aczél, J.,Einige aus Funktionalgleichungen zweier Veränderlichen ableitbare Differentialgeichungen. Acta Sci. Math. (Szeged)13 (1949), 179–189.

    Google Scholar 

  2. Aczél, J.,Remarks on a problem of Gy. Targonski. Report of the 27th ISFE, Poland 1989. Aequationes Math.39 (1990), 314–315.

    Google Scholar 

  3. Aczél, J. andGronau, D.,Some differential equations related to iteration theory. Canad. J. Math.40 (1988), 695–717.

    Google Scholar 

  4. Aczél, J. andGronau, D.,Iteration, translation, commuting and differential equations. In: Gronau, D. and L. Reich (eds),Selected topics in functional equations. [Grazer Math. Bericht Nr. 295], Math.-Stat. Sekt. Forschungsges. Joanneum, Graz, 1988.

    Google Scholar 

  5. Agnes, C. andRasetti, M.,Complexity, undecidability and chaos: a class of dynamical systems with fractal orbits. In: Livi et al. (eds),Workshop on chaos and complexity, Torino, Oct. 5–11, 1987. World Scientific, Singapore, 1988, pp. 3–25.

    Google Scholar 

  6. Alsedà, LL., Llibre, J. andMisiurewicz, M.,Combinatorial dynamics and entropy in dimension one. World Scientific, Singapore, 1992.

    Google Scholar 

  7. Alsina, C., Llibre, J., Mira, C., Simó, C., Targonski, Gy. andThibault, R., (eds),ECIT 87, Proc. Europ. Conf. on Iteration Th., Caldes de Malavella, Sept. 20–26, 1987. World Scientific, Singapore, 1989.

    Google Scholar 

  8. Barnsley, M.,Fractals everywhere. Academic Press, New York, 1988.

    Google Scholar 

  9. Bartels, A.,Über iterative Phantomwurzeln von Abbildungen (On iterative phantom roots of mappings). Diploma (M.Sc.) Thesis, Universität Marburg, 1991.

  10. Blanchard, P.,Complex analytic dynamics of the Riemann sphere. Bull. Amer. Math. Soc.11 (1984), 95–141.

    Google Scholar 

  11. Blažková, R. andChvalina, J.,Regularity and transivity of localautomorphism semigroups of locally finite forests. Arch. Math. (Brno) 4, Scripta Fac. Sci. Nat. USEP Brunensis20 (1984), 183–194.

    Google Scholar 

  12. Böttcher, A. andHeidler, H.,Algebraic composition operators. Integral Equations Operator Theory15 (1992), 390–411.

    Google Scholar 

  13. Bourlet, C.,Sur certaines équations analogues aux équations différentielles (On certain equations analogous to differential equations). C.R. Acad. Sci. Paris124 (1978), 1431–1433.

    Google Scholar 

  14. Bourlet, C.,Sur les transmutations (On transmutations). Bull. Soc. Math. France25 (1897), 132–140.

    Google Scholar 

  15. Burkart, U.,Zur Charakterisierung diskreter dynamischer Systeme (On characterization of discrete dynamical systems). Ph.D. Thesis, Universität Marburg, 1982.

  16. Cap, C. H.,Two approaches to the iteration problem of diffeomorphisms. In [Alsina et al. 89], pp. 139–144.

  17. Cap, C. H.,Solving Abel, Jabotinsky and inverse ODE problems. In [Mira et al. 91], pp. 19–28.

  18. Chvalina, J. andMatousková, K.,Coregularity of endomorphissm monoids of unars. Arch. Math. (Brno) 1, Scripta Fac. Sci. Nat. USEP Brunensis20 (1984), 43–48.

    Google Scholar 

  19. Collet, P. andEckmann, J. P.,Iterated maps on the interval as dynamical systems. Birkhäuser, Boston, 1980.

    Google Scholar 

  20. Deslauriers, G. andDubuc, S.,Continuous iterative iteration processes. In [Mira et al. 91], pp. 71–78.

  21. Douady, A. andHubbard, J.,Etude dynamique de polynômes complexes (Dynamical study of complex polynomials) I, II. [Publ. Math. Orsay 84-02 and 85-04], Univ. d'Orsay, Orsay, 1984–85.

  22. Dubuc, S.,Functional equations connected with peculiar curves. In [Liedl et al. 85], pp. 33–40.

  23. Ecalle, J.,Les fonctions résurgents (On resurgent functions), vol. 1, 2, [Publ. Math. Orsay], Univ. d'Orsay, Orsay, 1981.

  24. Ecalle, J.,Iteration and analytic classification of local diffeomorphisms ofv. In [Liedl et al. 85], pp. 41–48.

  25. Farmer, D. et al. (eds),Cellular automata. North Holland, Amsterdam, 1985.

    Google Scholar 

  26. Ferber, R.,Zelluläre Automaten als dynamische Systeme (Cellular automata as dynamical systems). Diploma (M.Sc.) Thesis, Universität Marburg, 1985.

  27. Ferber, R.,Räumliche und zeitliche Regelmäßigkeiten zellularer Automaten (Spatial and temporal regularities of cellular automata). Ph.D. Thesis, Universität Marburg, 1988.

  28. Ferber, R.,Cellular automata are the continuous self-mappings of configuration spaces. In [Mira et al. 91], pp. 79–85.

  29. Ferber, R., Targonski, Gy. andWeitkämper, J.,Fractional-time states of cellular automata. In [Mira et al. 91], pp. 86–106.

  30. Förg-Rob, W.,The Pilgerschritt transform in Lie algebras. In [Liedl et al. 85], pp. 59–71.

  31. Förg-Rob, W.,Some results on the Pilgerschritt transform. In [Alsina et al. 89], pp. 198–204.

  32. Förg-Rob, W. andNetzer, N.,Product-integration and one-parameter subgroups of linear Lie groups. In [Liedl et al. 85], pp. 71–82.

  33. Förg-Rob, W., Gronau, D., Mira, C., Netzer, N. andTargonski, Gy., (eds),Proceedings of ECIT 92, Batschuns (Austria), September 1992. World Scientific, Singapore, 1994.

    Google Scholar 

  34. Gale, D.,Conjectures. Math. Intelligencer13 (1991), 53–55.

    Google Scholar 

  35. Gardner, M.,Mathematical games. Scientific American, Oct. 1970 and Feb. 1971.

  36. Graw, R.,Über die Orbitstruktur stetiger Abbildungen (On the orbit structure of continuous mappings.). Ph.D. Thesis, Universität Marburg, 1982.

  37. Graw, R.,Compact orbits and periodicity. Nonlinear Anal.8 (1984), 1473–1479.

    Google Scholar 

  38. Gronau, D.,The Jabotinsky equations and the embedding problem. In [Mira et al. 91], pp. 138–148.

  39. Gronau, D.,On the structure of the solution of the Jabotinsky equations in Banach spaces. Zeitschr. Anal. Anw.10 (1991), 335–343.

    Google Scholar 

  40. Gumowski, I. andMira, C.,Dynamique chaotique (Chaotic dynamics). Cepadues Editions, Toulouse, 1980.

    Google Scholar 

  41. Gumowski, I. andMira, C.,Recurrences and discrete dynamic systems. [Springer Lecture Notes in Mathematics, Nr. 809], Springer, Berlin, 1980.

    Google Scholar 

  42. Isaacs, R.,Iterates of fractional order. Canad. J. Math.2 (1950), 409–416.

    Google Scholar 

  43. Jabotinsky, E.,Iteration. Ph.D. Thesis, The Hebrew University, Jerusalem, 1955.

    Google Scholar 

  44. Jabotinsky, E.,Analytic iteration. Trans. Amer. Math. Soc.108 (1963), 457–477.

    Google Scholar 

  45. Krasner, M.,Une géneralisation de la notion de corps (A generalization of the notion of field). J. Math. Pures Appl.17 (1938), 367–385.

    Google Scholar 

  46. Krause, G., Manuscript, 1988.

  47. Kuczma, M., Choczewski, B. andGer, R.,Iterative functional equations. [Encyclopedia of Mathematics and its Applications, vol. 32], Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  48. Lagarias, J. C.,The 3x + 1problem and its generalizations. American Math. Monthly92 (1985), 3–23.

    Google Scholar 

  49. Lampreia, J. P. andSousa Ramos, J.,Symbolic dynamics of trimodal maps. In [Mira et al. 91], pp. 184–193.

  50. Lampreia, J. P., Llibre, J., Mira, C., Sousa Ramos, J. andTargonski, Gy. (eds),ECIT 91, Proc. Europ. Conf. on Iteration Theory, Lisbon Sep. 15–21, 1991. World Scientific, Singapore, 1993.

    Google Scholar 

  51. Langenberg, H.,Zellulare Automaten und Iterationstheorie (Cellular automata and iteration theory). Diploma (M.Sc.) Thesis, Universität Marburg, 1992.

  52. Liedl, R.,Gruppenwertige Potenzreihen (Group valued power series). Anz. Österreich. Akad. Wiss. Math. Nat. Kl. 1986, No. 5, 57–58.

    Google Scholar 

  53. Liedl, R. andNetzer, N.,Group theoretic and differential geometric methods for solving the translation equation. In [Alsina et al. 89], pp. 240–252.

  54. Liedl, R. andNetzer, N.,Die Lösung der Translationsgleichung mittels schneller Pilgerschrittransformation (Solution of the translation equation by means of the fast Pilgerschritt transformation). [Grazer Ber. Nr. 314], Forschungsinst., Graz, 1991.

    Google Scholar 

  55. Liedl, R., Netzer, N. andReitberger, H.,Eine Methods zur Berechnung von einparametrigen Untergruppen ohne Verwendung des Logarithmus (A method for calculation of one-parameter subgroups without using logarithm). Österreich. Akad. Wiss., Math.-Natur. Kl. Sitzungsberg.II (1981), 273–284.

    Google Scholar 

  56. Liedl, R., Netzer, N. andReitberger, H.,Über eine Methode zur Auffindung stetiger Iterationen in Lie-Gruppen (On a method of finding continuous iteration in Lie groups). Aequationes Math.24 (1982), 19–32.

    Google Scholar 

  57. Liedl, R., Reich, L. andTargonski, Gy. (eds),Iteration Theory and its functional equations (Proceedings, Schloss Hofen 1984). Springer Lecture Notes in Mathematics Nr. 1163.

  58. Mandelbrot, B. B.,The fractal geometry of nature. W.H. Freeman, 1982.

  59. Miller, J. B.,Square root of uppertriangular matrices. [Analysis Paper No. 75], Dept. of Math., Monash University, Clayton, Vic., Australia, 1991.

    Google Scholar 

  60. Mira, C.,Frontière floue séparant des domaines d'attraction de deux attracteurs (Vague boundaries separating the domains of attraction of two attractors). C. R. Acad. Sci. Paris299 (1979), A591-A594.

    Google Scholar 

  61. Mira, C. andMüllenbach, S.,Sur l'itération fractionnaire d'un endomorphisme quasratique (On fractional iteration of a quadratic endomorphism). C. R. Acad. Sci. Paris Sér. I. Math.297 (1983), 369–372.

    Google Scholar 

  62. Mira, C., Netzer, N., Simó, C. andTargonski, Gy. (eds),Proceedings of ECIT 89, European Conference on Iteration Theory, Batschuns, Austria, 10–16 Sept. 1989. World Scientific, Singapore, 1991.

    Google Scholar 

  63. Netzer, N.,On the convergence of iterated pilgerschritt transforms. Zeszyty Nauk. Uniw. Jagiellon. Prace Mat.23 (1982), 91–98.

    Google Scholar 

  64. Netzer, N.,The convergence of fast Pilgerschritt transformation. In [Förg-Rob et al. 92].

  65. Netzer, N. andLiedl, R.,Fast Pilgerschritt transformation. In [Mira et al. 91], pp. 279–293.

  66. Netzer, N. andReitberger, H.,On the convergence of Pilgerschritt transformations in nilpotent Lie groups. Publ. Math. Debrecen29 (1982), 309–314.

    Google Scholar 

  67. Neuman, F.,Simultaneous solutions of a system of Abel equations and differential equations with several derivations. Czechoslovak Math. J.32 (1982), 488–494.

    Google Scholar 

  68. Neuman, F.,On iteration groups of certain functions. Arch. Math. (Brno)25 (1989), 185–194.

    Google Scholar 

  69. von Neumann, J.,Theory of self-reproducing automata. University of Illinois, Urbana-London, 1966.

    Google Scholar 

  70. Peitgen, H. O. andRichter, P. H.,The beauty of fractals. Springer, Berlin, 1986.

    Google Scholar 

  71. Peschl, E. andReich, L.,Eine Linearisierung kontrahierender biholomorpher Abbildungen und damit zusammenhängender analytischer Differentialgleichungssysteme (A linearization method for contractive biholomorphic maps and for related systems of analytic differential equations). Monatsh. Math.75 (1971), 153–162.

    Google Scholar 

  72. Reich, L.,Über analytische Iteration linearer und kontrahierender biholomorpher Abbildungen (On analytic iteration of linear and contractive biholomorphic mappings). [Bericht Nr. 42] Ges. Math. Datenverarb., Bonn, 1971.

    Google Scholar 

  73. Reich, L. (with the participation of J. Schwaiger),Analytische und fraktionelle Iteration formal-biholomorpher Abbildungen (Analytic and fractional iteration of formal biholomorphic maps). InJahrbuch Überblicke Mathematik 1979, Bibliographisches Institut, Mannheim, 1979, pp. 123–144.

    Google Scholar 

  74. Reich, L.,On a differential equation arising in iteration theory in rings of formal power series in one variable. In [Liedl et al. 85], pp. 135–148.

  75. Reich, L.,On families of commuting formal power series. InSelected topics in functional equations [Grazer Math. Bericht Nr. 294] Math-Stat. Sekkt. Forsch Ges. Joanneum, Graz, 1988, pp. 1–18.

    Google Scholar 

  76. Reich, L.,Die Differentialgleichungen von Aczél—Jabotinsky, von Briot—Bouquet und maximale Familien vertauschbarer Potenzreihen (The differential equations of Aczél—Jabotinsky, of Briot—Bouquet and maximal families of commuting power series). InComplex methods on partial differential equations. [Math. Res. Vol. 53]. Akademie Verlag, Berlin, 1989, pp. 137–150.

    Google Scholar 

  77. Reich, L.,On the embedding problem for formal power series with respect to the Aczél—Jabotinsky equations. In [Mira et al. 91], pp. 294–304.

  78. Reich, L.,On the local distribution of iterable power series transformation in one indeterminate. In:Functional analysis III, Proc. Postgrad School and Conf., Dubrovnik, Oct. 29–Nov. 2 (D Brutkovic et al. eds). [Aarhus Univ. Various Publications Series Nr. 40], Univ., Aarhus, 1992.

    Google Scholar 

  79. Reich, L.,On power series transformations in one indeterminate having iterative roots of a given order and with given multiplier. In [Lampreia et al. 93], pp. 210–216.

  80. Reich, L. andSchwaiger J.,Linearisierung formal-biholomorpher Abbildungen und Iterationsprobleme. Aequationes Math.20 (1980), 224–243.

    Google Scholar 

  81. Riggert, G.,n-te iterative Wurzeln von beliebigen Abbildungen (n-th iterative roots of arbitrary sets). InReport of the 1975 International Symposium on Functional Equations. Aequationes Math.15 (1977), 288.

    Google Scholar 

  82. Robert, F.,Discrete iterations. Springer, Berlin, 1986.

    Google Scholar 

  83. Schleiermacher, A.,On a theorem of Marc Krasner about invariant relations. In [Lampreia et al. 93], pp. 230–240.

  84. Schwaiger, J.,Phantom roots and phantom iterates of formal power series in one variable. In [Alsina et al. 89], pp. 313–323.

  85. Schwaiger, J.,On polynomials having different types of roots. In [Mira et al. 91], pp. 315–319.

  86. Schweizer, B. andSklar, A.,Invariants and equivalence classes of polynomials under linear conjugacy. InContributions to general algebra, No. 6. Hölder—Pinchler—Tempsky, Vienna and Teubner, Stuttgart, 1988.

    Google Scholar 

  87. Schweizer, B. andSklar, A.,The baker's transformation is not embeddable. Found. of Phys.20 (1990), 873–897.

    Google Scholar 

  88. Simon, K.,Hausdorff dimensions for certain near-hyperbolic maps. In [Lampreia et al. 93], pp. 253–261.

  89. Sklar, A.,Canonical decompositions, stable functions, and fractional iterates. Aequationes Math.3 (1969), 118–129.

    Google Scholar 

  90. Sklar, A.,The structure of one-dimensional flows with continuous trajectories. Rad. Mat.3 (1987), 111–142.

    Google Scholar 

  91. Skornjakov, L. A.,Unars. InUniversal algebra. [Coll. Mat. Soc. János Bolyai 29], J. Bolyai Math. Soc. Budapest, 1977, pp. 735–743.

  92. Smajdor, A.,Iteration of multi-valued functions. [Prace Nauk. Uniw. Sląsk. Katowic. No. 759], Silesian Univ. Katowice, 1985.

    Google Scholar 

  93. Smajdor, A.,One-parameter families of set-valued contractions. In [Alsina et al. 89].

  94. Smajdor, A.,Almost-everywhere set-valued semigroups. In [Lampreia et al. 93], pp. 262–272.

  95. Smítal, J.,On functions and functional equations. Adam Hilger, Bristol—Philadelphia, 1988.

    Google Scholar 

  96. Snowden, M. andHowie, J. M.,Square roots in finite full transformation semigroups. Glasgow Math. J.23 (1982), 137–149.

    Google Scholar 

  97. Targonski, Gy.,Seminar on functional operators and equations. [Springer Lecture Notes in Mathematics, No. 33], Springer, Berlin, 1967.

    Google Scholar 

  98. Targonski, Gy.,Topics in iteration theory. Vandenhoeck & Ruprecht, Göttingen—Zürich, 1981.

    Google Scholar 

  99. Targonski, Gy.,New directions and open problems in iteration theory. [Grazer Math. Bericht No. 229], Math. Stat. Sekt. Forschungszentrum, Graz, 1984.

    Google Scholar 

  100. Targonski, Gy.,Phantom iterates of continuous functions. In [Liedl et al. 85], pp. 196–202.

  101. Targonski, Gy.,Iteration theory and functional analysis. In [Alsina et al. 89], pp. 74–93.

  102. Targonski, Gy.,On composition operators. Zeszyty Nauk. Politechn. Sląsk. Ser. Mat.-fiz.64 (1990).

  103. Targonski, Gy.,Problem 25, InReport of the 27th ISFE, Poland 1989. Aequationes Math.39 (1990), 313–314.

    Google Scholar 

  104. Targonski, Gy.,On a class of phantom fractional iterates. In [Lampreia et al. 93], pp. 295–301.

  105. Targonski, Gy.,Phantom iterates and Liedl's Pilgerschritt transformation. In [Förg-Rob et al. 94].

  106. Targonski, Gy. andZdun, M. C.,Generators and co-generators of substitution semigroups. Ann. Math. Sil.1 (13 (1985), 169–174.

    Google Scholar 

  107. Targonski, Gy. andZdun, M. C.,Substitution operators on L p-spaces and their semigroups. [Grazer Math. Bericht No. 283], Math.-Stat. Sekt. Forsch. Ges. Joanneum, Graz, 1987.

    Google Scholar 

  108. Thibault, R.,Some results obtained in Toulouse on dynamical systems. In [Alsina et al. 89], pp. 94–112.

  109. Ushiki, Sh.,Chaotic Phenomena and Fractal Objects in Numerical Analysis. In: Nishida, T. et al. (eds),Patterns and waves—qualitative analysis of nonlinear differential equations. [Stud. Math. Appl.], North Holland, Amsterdam, 1986, pp. 221–258.

    Google Scholar 

  110. Wagon, S.,The Collatz problem. Math. Intelligencer7 (1985), 72–76.

    Google Scholar 

  111. Weitkämper, J.,Embeddings in iteration groups and semigroups with nontrivial units. Stochastica7 (1983), 175–195.

    Google Scholar 

  112. Whitley, D.,Discrete dynamical systems in dimensions one and two. Bull. London Math. Soc.15 (1983), 177–217.

    Google Scholar 

  113. Zdun, M. C.,Continuous and differentiable iteration semigroups. [Prace Nauk. Uniw. Sląsk. Katowic. No. 308], Silesian Univ., Katowice, 1979.

    Google Scholar 

  114. Zdun, M. C.,On embedding of the circle in a continuous flow in [Liedl et al. 85], pp. 218–231.

  115. Zdun, M. C.,Regular fractional iteration. Aequationes Math.28 (1985), 73–79.

    Google Scholar 

  116. Zdun, M. C.,Note on commutable functions. Aequationes Math.36 (1988), 153–164.

    Google Scholar 

  117. Zdun, M. C.,On continuity of iteration semigroups on metric spaces. Annal. Soc. Math. Polon.29 (1989), 113–116.

    Google Scholar 

  118. Zdun, M. C., On ℂr iteration group. In [Alsina et al. 89], pp. 373–381.

  119. Zdun, M. C.,On simultaneous Abel equations. Aequationes Math.38 (1989), 163–177.

    Google Scholar 

  120. Zdun, M. C.,On quasi-continuous iteration semigroups and groups of real functions. Colloq. Math.58 (1990), 281–289.

    Google Scholar 

  121. Zdun, M. C.,The structure of iteration groups of continuous functions. Aequationes Math.46 (1993), 19–37.

    Google Scholar 

  122. Zdun, M. C.,On continuous iteration groups of fixed point free mappings inn space. In [Mira et al. 91], pp. 362–368.

  123. Zdun, M. C.,Some remarks on the iterates of commuting functions. In [Lampreia et al. 93], pp. 336–342.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Targonski, G. Progress of iteration theory since 1981. Aeq. Math. 50, 50–72 (1995). https://doi.org/10.1007/BF01831113

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01831113

AMS (1991) subject classification

Navigation