Advertisement

aequationes mathematicae

, Volume 35, Issue 2–3, pp 277–280 | Cite as

3-Sphären mit kleinen Eckenvalenzen

  • Günter Ewald
  • Christoph Schulz
Research Papers

AMS (1980) subject classification

Primary 51D20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Altshuler, A. andShemer, I.,Construction theorems for polytopes. Israel J. Math.47 (1984), 99–100.Google Scholar
  2. [2]
    Barnette, D. Diagrams and Schlegel-diagrams. In Combinatorial Structures and their Applications, Gordon and Breach, New York 1970, pp. 1–4.Google Scholar
  3. [3]
    Barnette, D.,The triangulations of the 3-sphere with up to 8 vertices. J. Comb. Theory14 (1973), 37–52.CrossRefGoogle Scholar
  4. [4]
    Barnette, D.,An invertible non-polyhedral diagram. Israel J. Math.36 (1980), 86–96.Google Scholar
  5. [5]
    Ewald, G. andShephard, G. C.,Stellar subdivisions of boundary complexes of polytopes. Math. Ann.210 (1974), 7–16.CrossRefGoogle Scholar
  6. [6]
    Grünbaum, B.,Convex polytopes. Interscience, New York, 1967.Google Scholar
  7. [7]
    Kleinschmidt, P.,Sphären mit wenigen Ecken. Geom. Dedicata5 (1976), 307–320.Google Scholar
  8. [8]
    Mani, P.,Spheres with few vertices. J. Comb. Theory Ser. A13 (1972), 346–352.CrossRefGoogle Scholar
  9. [9]
    Schulz, Ch.,An invertible 3-diagram with 8 vertices. Discrete Math.28 (1979), 201–205.CrossRefGoogle Scholar
  10. [10]
    Schulz, Ch.,Dual pairs of non-polytopal diagrams and spheres. Discrete Math.55 (1985), 65–72.CrossRefGoogle Scholar
  11. [11]
    Sturmfels, B.,Boundary complexes of convex polytopes cannot be characterized locally. J. London Math. Soc., to appear.Google Scholar

Copyright information

© Birkhäuser Verlag 1988

Authors and Affiliations

  • Günter Ewald
    • 1
  • Christoph Schulz
    • 2
  1. 1.Ruhr-Universität Bochum, Abt. f. MathematikBochumWest Germany
  2. 2.Fernuniversität (ZFE)HagenWest Germany

Personalised recommendations