aequationes mathematicae

, Volume 34, Issue 2–3, pp 264–276 | Cite as

Hidden lemmas in the early history of infinite series

  • D. Laugwitz
Research Papers


Euler, Fourier, Poisson and Cauchy appear to have used, in a more or less implicit form, some facts on infinitely small quantities. Attempting to state and prove several lemmata, I shall discuss their relationships to interchanges of limits in series and integrals. Early methods of summation for divergent series and integrals, including a conjecture of Poisson, are discussed.

AMS (1980) subject classification

Primary 01A99 Secondary 03H05, 40A05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Burkhardt, H.,Trigonometrische Reihen und Integrale bis etwa 1850. Encyklopädie Math. Wiss. IIA12 (1914), 810–1354.Google Scholar
  2. [2]
    Cauchy, A. L.,Cours d'analyse. (1821) Oeuvres, Ser. 2, Tome3, Gauthier-Villars, Paris, 1897.Google Scholar
  3. [3]
    Cauchy, A. L.,Résumé des leçons. (1823). Oeuvres, Ser. 2, Vol. 4, Gauthier-Villars, Paris, 1899, pp. 5–261.Google Scholar
  4. [4]
    Cauchy, A. L.,Mémoire sur les développements des fonctions en séries périodiques. (1827). Oeuvres, Ser. 1, Vol 2, Gauthier-Villars, Paris, 1911, pp. 12–19.Google Scholar
  5. [5]
    Cauchy, A. L.,Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données. (1853). Oeuvres, Ser. 1, Vol. 12. Gauthier-Villars, Paris, 1899, pp. 30–36.Google Scholar
  6. [6]
    Euler, L.,De progressionibus harmonicis observationes. (1734–35). Opera, Ser. 1, Vol. 14. Teubner, Leipzig-Berlin, 1924, pp. 87–100.Google Scholar
  7. [7]
    Euler, L.,Introductio in analysin infinitorum, (1748). Opera, Ser. 1, Vol. 8. Teubner, Leipzig-Berlin, 1922, pp. 8.Google Scholar
  8. [8]
    Euler, L.,Subsidium calculi sinuum. (1754–55). Opera, Ser. 1, Vol. 14. Teubner, Leipzig-Berlin, 1924, pp. 542–584.Google Scholar
  9. [9]
    Freudenthal, H.,Cauchy. Dictionary of Sci. Biography, ed. Gillispie, Vol. 2, 131–148.Google Scholar
  10. [10]
    Grattan-Guiness, I.,The development of the foundations of mathematical analysis from Euler to Riemann. MIT, 1970.Google Scholar
  11. [11]
    Hardy, G. H.,Divergent series. Claredon Press, Oxford, 1949.Google Scholar
  12. [12]
    Laugwitz, D.,Zahlen und Kontinuum. Eine Einführung in die Infinitesimalmathematik. Mannheim, 1986.Google Scholar
  13. [13]
    Reiff, R.,Geschichte der unendlichen Reihen. Tübingen, 1899. Reprinted Wiesbaden, 1969.Google Scholar

Copyright information

© Birkhäuser Verlag 1987

Authors and Affiliations

  • D. Laugwitz
    • 1
  1. 1.Fachbereich MathematikTechnische Hochschule DarmstadtDarmstadtWest Germany

Personalised recommendations