Geologische Rundschau

, Volume 79, Issue 2, pp 495–512 | Cite as

Relation of selected mineral deposits to the mass/age distribution of Phanerozoic sediments

  • William W. Hay
  • Christopher N. Wold
Article

Abstract

The global mass/age distribution of Phanerozoic sediment shows maxima in the Middle Paleozoic, at the Paleozoic-Mesozoic boundary, and in the Late Mesozoic. All of these total sediment mass maxima are also maxima of masses of volcanogenic sediment and non-marine sediment, and represent times of maximum sediment flux on the surface of the earth. The Middle Paleozoic and Late Mesozoic maxima correspond to the great marine inundations of the continents, and the Late Paleozoic-Early Mesozoic maximum to the time of transfer of a large number of terranes across the Tethys from Gondwanaland to Eurasia. All three maxima of sedimentary mass correspond to times of rapid sea-floor spreading and orogeny.

Organic carbon in dispersed form is enriched in sediments forming hydrocarbons during the sediment flux maxima of the Middle Paleozoic and Late Mesozoic (Jurassic-Cretaceous), but is preserved as coal during sediment flux minima of the Carboniferous and Early Cenozoic. Sedimentary iron deposits and phosphorite deposition are most widespread when the global sedimentary flux is minimal. Potassium salts were deposited at times of sediment flux

Keywords

Gondwana Orogeny Phosphorite Potassium Salt Sediment Flux 

Zusammenfassung

Die globale Verteilung der Sedimentmassen nach ihrem Alter zeigt Massenmaxima im Mittel-Paläozoikum, an der Grenze Paläozoikum-Mesozoikum und im Spät-Mesozoikum, sowie Massenminima dazwischen. Die Maxima der gesamten Sedimentmasse sind auch Maxima der vulkanogenen und terrestrischen Sedimente; sie fallen in Zeiten maximaler Erosion, Umlagerung und Sedimentation. Die mittel-paläozoischen und spät-mesozoischen Maxima sind zeitlich mit den größten Überflutungen der Kontinenten verbunden. An der Wende vom Paläozoikum zum Mesozoikum, an der es keinen Hochstand des Meeresspiegels gab, überwucherten viele kleinere Kontinentschollen die Tethys von Gondwana nach Asien. Vermutlich waren alle drei Maxima auch Zeiten maximalen Sea-floor Spreadings und der Orogenese.

Organischer Kohlenstoff wurde während der Sedimentations-Maxima im mittleren Paläozoikum und späteren Mesozoikum (Jura-Kreide) in marinen Sedimenten angereichert aber während der Sedimentationsminima im Spät-Paläozoikum und im frühen Känozoikum als Kohle abgelagert. Eisenoolite und Phosphorite finden ihre weiteste Verbreitung zu Zeiten der Sedimentationsminima. Kalisalze wurden zu den Zeiten der Sedimentationsmaxima ausgeschieden.

Résumé

Au cours du Phanérozoïque, la répartition a l'échelle globale de la masse des sédiments déposés en fonction de leur âge présente des maxima au Paléozoïque moyen, à la limite Paléozoïque-Mésozoïque et au Mésozoïque supérieur; elle présente des minima aux autres périodes. Tous ces maxima de la masse totale des sédiments sont aussi des maxima des sédiments volcanoclastiques et des sédiments continentaux; ils représentent les périodes oú les transports sédimentaires étaient les plus importants à la surface du globe. Les maxima du Paléozoïque supérieur correspondent aux grandes invasions marines des continents, tandis que le maximum paléozoïque-mésozoïque correspond au transfert à travers la Téthys d'un grand nombre de «terranes» du Gondwana vers l'Eurasie. Les trois maxima correspondent également à des périodes d'expansion océanique rapide et d'orogenèse active.

Le carbone organique s'est déposé sous forme dispersée dans les sédiments marins (roches-mères des hydrocarburse) lors des maxima du Paléozoïque moyen et du Mésozoïque supérieur, tandis qu'il a été conservé sous forme de charbon lors des minima du Carbonifère et du Cénozoïque inférieur. Les dépôts de minerais de fer sédimentaires oolitiques et de phosphate présentent leur plus grande extension au cours des périodes de sédimentation globale minimale. Les sels potassiques se sont déposés pendant les périodes de sédimentation maximale.

Краткое содержание

Изучение глобальног о распределения масс ы седиментов по возрасту установи ло их максимумы в сред нем палеозое, на границе п алеозой/мезозой и в по зднем мезозое, а также миним умы накопления седим ентов в периоды между ними. М аксимум общей массы седиментов совпадае т с максимумом вулкан ической и терригенной седимен тации; они приходятся на времена усиленной эрозии, пер еотложения и осадкон акопления. Максимум в среднем па леозое и позднем мезо зое совпадает с наибольш им наступлением океа на на материки. На границе п алеозоя и мезозоя, т.е. когда уровень моря не стоял высоко, появились многочисленные маленькие материков ые глыбы, тянущиеся поперек Тетиса от Гон дваны к Азии. Вероятно все три максимума совпадали как с максимальным ра сширением дна океана, так и с макс имумами горообразов ательных процессов.

Во время максимума се диментации в среднем палеозое и позднем мезозое юра /мел отмечается накоп ление органического углер ода в морских отложен иях, а во время минимума оса дконакопления в позд нем палеозое и раннем кайнозое про исходило отложение угольных месторожде ний. Оолиты железа и фо сфариты наиболее распростра нены во время минимум а осадконакопления. Во время же их максиму ма идет образование калиевых солевых мес торождений.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanas'yeva, G. D. &ZykOV, S. I. (1975): The Phanerozoic geochronological time-scale in terms of the new decay constants. - Moscow, Nauka, 100 pp.Google Scholar
  2. Anonymous (1985): World Survey of Potash Resources. 4th ed., - London, The British Sulfur Corporation, Ltd, 145 pp.Google Scholar
  3. Barrell, J. (1917): Rhythms and the measurement of geological time. - Geol. Soc. Amer. Bull.,28, 745–904.Google Scholar
  4. Barron, E. J., Hay, W. W. &Thompson, S. L. (1989): The hydrologic cycle: a major variable during earth history. - Palaeogeography, Palaeoclimatology, Palaeoecology (Global Change Section),75, 157–174.Google Scholar
  5. Benkö, F. (1985): Geological and Cosmogenic Cycles as Reflected by the New Law of Universal Cylitity. - Budapest, Akademiai Kiado, 401 pp.Google Scholar
  6. Berner, R. A., (1989): Drying, O2 and mass extinction. - Nature,340, 603–604.Google Scholar
  7. —,Lasaga, A. C. &Garrels, R. M. (1983): The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. - Amer. Jour. Sci.,283, 641–683.Google Scholar
  8. Bestougeff, M. A. (1980): Introduction: Aperçu sur les ressources et les réserves charbonnières du monde. Leur repartition géographique et géologique. Introduction: Summary of mondial coal resources and reserves. Geographic and geologic repartition. - Revue de l'Institut français du pétrole,35, 353–366.Google Scholar
  9. Budyko, M. I., Ronov, A. B. &Yanshin, A. L. (1985): Istoriya Atmosferi. - Leningrad, Gidrometeoizdat, 140 pp.Google Scholar
  10. — — — (1987): History of the Earth's Atmosphere. - New York, Springer-Verlag, 139 pp.Google Scholar
  11. Cook, D. &Bally, A. W. (1975): Stratigraphie Atlas of North and Central America. - Princeton, Princeton University Press, 272 pp.Google Scholar
  12. Cook, P. J. &McElhinney, M. W. (1979): A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. - Economic Geology,74, 315–330.Google Scholar
  13. De Ruiter, P. A. C. (1979): The Gabon and Congo Basins salt deposits. - Economic Geology,74, 419–431.Google Scholar
  14. Drever, J. I., Li, Y.-H. &Maynard, J. B. (1988): Geochemical cycles: the continental crust and the oceans. - In: Gregor, C. B., Garrels, R. M., Mackenzie, F. T. & Maynard, J. B. (editors), Chemical Cycles in the Evolution of the Earth, New York, John Wiley & Sons, 17–53.Google Scholar
  15. Fischer, A. G. &Arthur, M. A. (1977): Secular variations in the pelagic realm. - In: Cook, H. E. & Enos, P. (editors): Deep-Water Carbonate Environments, Soc. Econ. Paleont. Mineral, Spec. Pub.,25, 19–50.Google Scholar
  16. Garrels, R. M. Mackenzie, F. T. (1971a): Gregor's denudation of the continents. - Nature,231, 382–383.Google Scholar
  17. — & — (1971b): Evolution of Sedimentary Rocks. - New York, Norton, 397 pp.Google Scholar
  18. Gilluly, J. (1949): Distribution of mountain building in geologic time. - Geol. Soc. Amer. Bull.,60, 561–590.Google Scholar
  19. — (1969): Geological perspectives and the completeness of the geologic record. - Geol. Soc. Amer. Bull.,80, 2303–2312.Google Scholar
  20. —,Reed, J. C. &Cady, W. M. (1970): Sedimentary volumes and their significance. - Geol. Soc. Amer. Bull.,81, 353–375.Google Scholar
  21. Gregor, C. B. (1967): The geochemical behaviour of sodium, with special refence to post-Algonkian sedimentation. - Verh. Koninkl. Nederl. Akad. Wetenscap.,24, 1–67.Google Scholar
  22. — (1968): The rate of denudation in Post-Algonkian time. - Konikl. Nederl. Akad. Wetenschap., Proc. Ser. B, Phys. Sci.,71, 22–30.Google Scholar
  23. — (1970): Denudation of the continents. - Nature,228, 273–275.Google Scholar
  24. — (1985): The mass-age distribution of Phanerozoic sediments. - In: Snelling, N. J. (editor), The Chronology of the Geological Record, Geological Society Memoir 10, Oxford, Blackwell Scientific Publications, 284–289.Google Scholar
  25. Guerrak, S. (1988): Geology of the Early Devonian oolitic iron ore of the Gara Djebilet field, Saharan Platform, Algeria. - Ore Geology Reviews,3, 333–358.Google Scholar
  26. Harland, W. B., Cox, A. V., Llewellyn, P. G., Pickton, C. A. G., Smith, A. G. &Walters, R. (1982): A Geologic Time Scale, - Cambridge, Cambridge University Press, 128 pp.Google Scholar
  27. Hay, W. W. (1985): Potential errors in estimates of carbonate rock accumulating through geologic time. - In: Sundquist, E. T. & Broecker, W. S. (editors): The Carbon Cycle and Atmospheric CO2: Natural Variations, Archean to Present, Washington, D.C., American Geophysical Union, Geophysical Monograph,32, 573–583.Google Scholar
  28. — &Southam, J. R. (1977): Modulation of marine sedimentation by the continental shelves. - In: Anderson, N. R. & Malahoff, A. (editors): The Fate of Fossil Fuel CO2 in the Oceans, New York, Plenum Press, Marine Science Series 6, 569–604.Google Scholar
  29. —,Rosol, M. J., Sloan, J. L. II &Jory, D. E. (1987): Plate tectonic control of global patterns of detrital and carbonate sedimentation. - In: Doyle, L. J. & Roberts, H. H. (editors): Carbonate-Clastic Transitions: Developments in Sedimentology, Amsterdam, Else vier,42, 1–34.Google Scholar
  30. —,Sloan, J. L. H. &Wold, C. N. (1988): Mass/Age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction. - Jour. Geophys. Res.,93, 14933–14940.Google Scholar
  31. —,Shaw, C. A. &Wold, C. N. (1989): Mass-balanced paleogeographic reconstructions. - Geologische Rundschau,78, 207–242.Google Scholar
  32. —,Barron, E. J. &Thompson, S. L. (1990): Results of global circulation experiments on an Earth with a meridional pole-to-pole continent. - Jour. Geol. Soc. (London),147, 385–392.Google Scholar
  33. Hays, J. D. &Pitman, W. C. III (1973): Lithospheric plate motion, sea level changes and climatic and ecological consequences. - Nature,246, 18–22.Google Scholar
  34. Holmes, A. (1965): Principles of Physical Geology. - Edingburgh Nelson, 1025 pp.Google Scholar
  35. Hutchison, C. S. (1983): Economic deposits and their tectonic setting. - London, Macmillan, 365 pp.Google Scholar
  36. Kent, D. V. &Gradstein, F. M. (1986): A Jurassic to Recent chronology. - In: Vogt, P. R. & Tucholke, B. E. (editors): The Geology of North America, Volume M, The Western North Atlantic Region, Boulder, Geological Society of America, 45–50.Google Scholar
  37. Kimberley, M. M. (1981): Oolitic iron formations. - In: Wolf, K. H. (editors): Handbook of Strata-Bound and Stratiform Ore Deposits, Amsterdam, Elsevier,9, 25–77.Google Scholar
  38. Klingspor, A. M. (1969): Middle Devonian Muskeg evaporites of western Canada. - Amer. Assoc. Petrol. Geol. Bull.,53, 927–948.Google Scholar
  39. Kominz, M. (1984): Oceanic ridge volumes and sealevel change — an error analysis. - In: Schlee, J. S. (editors): Interregional Unconformities and Hydrocarbon Accumulation, Amer. Assoc. Petrol. Geol. Memoir 36, 109–127.Google Scholar
  40. Lasaga, A. C., Berner, R. A. &Garrels, R. M. (1985): An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years. - In: Sundquist, E. T. & Broecker, W. S. (editors): The Carbon Cycle and Atmospheric CO2: Natural Variations — Archaean to Present, Washington, D.C., American Geophysical Union, Geophysical Monograph32, 397–411.Google Scholar
  41. Palmer, A. R. (1983): A Decade of North American Geology 1983 geologic time scale. - Geology,11, 503–504.Google Scholar
  42. Patterson, S. H., Kurtz, H. F., Olson, J. C. &Neeley, C. L. (1986): World bauxite resources. U.S. Geol. Surv., Prof. Pap. 1076-B, B1-B151.Google Scholar
  43. Pinet, P. &Souriau, M. (1988): Continental erosion and large-scale relief. - Tectonics,7, 563–582.Google Scholar
  44. Pitman, W. C. III (1978): Relationship between eustasy and stratigraphic sequences of passive margins. - Geol. Soc. Amer. Bull.,89, 1389–1403.Google Scholar
  45. Raymo, M. E., Ruddiman, W. F. &Froelich, P. N. (1988): Influence of Late Cenozoic mountain building on ocean geochemical cycles. - Geology,16, 649–653.Google Scholar
  46. Ronov, A. B. (1968): Probable changes in the composition of sea water during the course of geologic time. - Sedimentology,10, 25–43.Google Scholar
  47. — (1980): The earth's sedimentary shell (quantitative patterns of its structure, compositions, and evolution).- The 20th V. I. Vernadski Lecture, March12, 1978 (in Russian). In: Yaroshevskii, A. A. (editor): The earth's sedimentary shell (quantitative patterns of its structure, compositions, and evolution), Moscow, Nauka, 80 pp. [English translation in Internat. Geol. Rev.,24, 1313–1388 (1982); also American Geological Institute Reprint Series,5, 73 pp. (1983)]. - (1985): Correlation of a mass of dispersed organic matter and reserves of oil in the sedimentary shell of the earth.Google Scholar
  48. - Geokhimija, 1985/8, 1090–1109 [In Russian; English translation in Geochemistry International, 1986/2, 19–37].Google Scholar
  49. —,Migdisov, A. A. &Barskaya, N. V. (1969): Evolutionary patterns of the sedimentary rocks and the paleogeographic conditions of sedimentation on the Russian Platform (An attempt at a quantiative study). - Litol. i Polezn. Iskop. n. 6, 3–36.Google Scholar
  50. —,Khain, V., Balukhovsky, A. N. &Seslavinsky, K. (1980): Quantiative analysis of Phanerozoic sedimentation. - Sedimentary Geology,25, 311–325.Google Scholar
  51. — —, &Seslavinsky, K. B. (1984): - Atlas of Lithological-Paleogeographical Maps of the World: Late Precambrian and Paleozoic of the Continents, Leningrad, U.S.S.R. Academy of Science Press, 70 pp.Google Scholar
  52. — — &Balukhovsky, A. N. (1986a): Global quantiative balance of continental and oceanic sedimentation during the last 150 million years. - Academia Nauk SSSR, Izvestia, ser. geol., n. 11, 3–11.Google Scholar
  53. — — (1986b): Quantitative distribution of sediments in oceans. - Litol. Polezn. Iskop., n.2, 3–16.Google Scholar
  54. — — (1989): Atlas of Lithological-Paleogeographical Maps of the World: Mesozoic and Cenozoic of Continents and Oceans, Leningrad, U.S.S.R. Academy of Science Press, 79 pp.Google Scholar
  55. Ross, C. A. &Ross, J. R. P. (1988): Late Paleozoic transgressive-regressive deposition. - In: Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W, Ross, C. A. & Van Wagoner, J. C. Soc. Econ. Paleont. Mineral. Spec. Pub.,42, 227–247.Google Scholar
  56. Schuchert, C. (1931): Geochronology, or the age of the earth on the basis of sediments and life. - Bulletin 80, Physics of the Earth, 4, The Age of the Earth, Washington, D.C. National Research Council, 10–64.Google Scholar
  57. — (1955): Atlas of Paleogeographic Maps of North America. - New York, John Wiley & Sons Inc., 177 pp.Google Scholar
  58. Sengör, A. M. C. (1987): Tectonics of the Tethysides: Orogenic collage development in a collisional setting. - Annual Reviews of Earth and Planetary Science,15, 213–244.Google Scholar
  59. Sheldon, R. P. (1980): Episodicity of phosphate deposition and deep ocean circulation — a hypothesis. - In: Bentor, Y. K. (editor): Marine Phosphorites — Geochemistry, Occurrence, Genesis, Soc. Econ. Paleont. Mineral. Spec. Pub.29, 239–247.Google Scholar
  60. Snelling, N. J. (1985): An interim time-scale. - In: Snelling, N. J. (editor): The Chronology of the Geological Record, Geological Society Memoir 10, Oxford, Blackwell Scientific Publications, 261–265.Google Scholar
  61. Southam, J. R. &Hay, W. W. (1981): Global sedimentary mass balance and sea level changes. - In: Emiliani, C. (editors): The Sea, 7, The Oceanic Lithosphere, New York, Wiley-Interscience, 1617–1684.Google Scholar
  62. Tardy, Y., N'kounkou, R. &Probst, J.-L. (1989): The global water cycle and continental erosion during Phanerozoic time (570 my). - Amer. Jour. Sci.,289, 455–483.Google Scholar
  63. Termier, H. &Termier, G. (1952): Histoire géologique de la Biosphére. - Paris, Masson & Cie, 721 pp.Google Scholar
  64. Tissot, B. (1979): Effects on profilic petroleum source rocks and major coal deposits caused by sealevel changes. - Nature,277, 463–465.Google Scholar
  65. Vail, P. R.,Mitchum, R. M. Jr. &Thompson, S. III (1977): Global cycles of relative changes of sea level. - In: Payton, C. E. (editors): Seismic Stratigraphy — Application to Hydrocarbon Exploration, Amer. Assoc. Petrol. Geol. Memoir,26, 83–97.Google Scholar
  66. Valeton, I. (1972): Bauxites, Developments in Soil Science, 1. - Amsterdam, Elsevier, 226 pp.Google Scholar
  67. van, Houten, F. B. &Arthur, M. A. (1989): Temporal patterns among Phanerozoic oolitic ironstones and oceanic anoxia. - In: Young, T. P. & Taylor, W. E. G. (editors): Phanerozoic Ironstones, Geological Society (London) Special Publication46, 33–49.Google Scholar
  68. Veizer, J. (1976): Evolution of ores of sedimentary affiliation through geologic history; relations to the general tendencies in evolution of the crust, hydrosphere, atmosphere, and biosphere. - In: Wolf, K. H. (editor): Handbook of Strata-Bound and Stratiform Ore Deposits, Volume 3, Supergene and Superficial Ore Deposits; Textures and Fabrics, Amsterdam, Elsevier, 1–41.Google Scholar
  69. — (1988): The evolving exogenic cycle. - In: Gregor, C. B., Garrels, R. M., Mackenzie, F. T. & Maynard, J. B. (editors): Chemical Cycles in the Evolution of the Earth, New York, Wiley-Interscience, 175–220.Google Scholar
  70. — — (1979): Basement and sedimentary recycling and continental evolution. - Journal of Geology,87, 341–370.Google Scholar
  71. — (1985): Basement and sedimentary cycling. - 2: Time dimension to global tectonics.- Journal of Geology,93, 625–664.Google Scholar
  72. —,Laznicka, P. &Jansen, S. L. (1989): Mineralization through geologic time: recycling perspective. - Amer. Jour. Sci.,289, 484–524.Google Scholar
  73. Vinogradov, A. P. (1967): Atlas of the Lithological Paleogeographical Maps of the USSR, 4, Paleogene, Neogene and Quaternary.- Moscow, Ministry of Geology of the USSR, 55 sheets.Google Scholar
  74. — (1968a): Atlas of the Lithological Paleogeographical Maps of the USSR, 1, Precambrian, Cambrian, Ordovician and Silurian Periods. - Moscow, Ministry of Geology of the USSR, 52 sheets.Google Scholar
  75. — (1968): Atlas of the Lithological Paleogeographical Maps of the USSR, 3, Triassic, Jurassic, and Cretaceous. - Moscow, Ministry of Geology of the USSR, 71 sheets.Google Scholar
  76. — (1969): Atlas of the Lithological Paleogeographical Maps of the USSR, 2, Devonian, Carboniferous and Permian, Moscow, Ministry of Geology of the USSR, 65 sheets.Google Scholar
  77. Wilson, K. W., Rosol, M. J. &Hay, W. W. (1989): Global Mesozoic reconstructions using revised continental data and terrane histories: A progress report. - In: Hillhouse, J. W. (editor): Deep Structure and Past Kinematics of Accreted Terranes, Washington, DC, American Geophysical Union/International Union of Geodesy and Geophysics, Monograph 5, 1–40.Google Scholar
  78. Wise, D. U. (1974): Continental margins, freeboard and volume of continents and oceans through time. - In: Burk, C. A. & Drake, C. L. (editors): The Geology of Continental Margins, New York, Springer-Verlag, 45–58.Google Scholar
  79. Wold, C. N. &Hay, W. W. (1990): Estimating Ancient Sediment Fluxes. - Amer. Jour. Sci., 290, in press.Google Scholar
  80. — &Wilson, K. M. (1987): Reconstructed mass-age distributions of young sediment through the Phanerozoic. - Geol. Soc. Amer., Abstracts with Program,19, 895.Google Scholar
  81. Wopfner, H. &Schwarzbach, M. (1976): Ore deposits in the light of paleoclimatology. - In: Wolf, K. H. (editor): Handbook of Strata-bound and Stratiform Ore Deposits, 3, 43–92.Google Scholar
  82. Young, T. P. &Taylor, W. E. G. (editors) (1989): Phanerozoic Ironstones. Geol. Soc. (London) Spec. Pub. 46, 251 pp.Google Scholar
  83. Zharkov, M. A. (1981): History of Paleozoic Salt Accumulation. - Berlin, Springer-Verlag, 308 pp.Google Scholar
  84. Ziegler, W. H. (1975): North Sea Basin history in the tectonic framework of northwest Europe. - In: Woodland, A. W. (editor): Petroleum and the Continental Shelf of Northwest Europe, Volume 1, Geology, London, Applied Science Publishers, 165–190.Google Scholar

Copyright information

© Ferdinand Enke Verlag Stuttgart 1990

Authors and Affiliations

  • William W. Hay
    • 1
  • Christopher N. Wold
    • 1
  1. 1.Department of Geology, Cooperative Institute for Research in Environmental Sciences, and MuseumUniversity of ColoradoBoulderUSA

Personalised recommendations