Skip to main content
Log in

Compactional behavior of fine-grained sediments — examples from Deep Sea Drilling Project cores

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Zusammenfassung

Die Synthese experimenteller Labordaten, statistischer Analysen von Messungen an Kernen und theoretischer Modellierung der Kompaktion im Gleichgewicht mit der Auflast ermöglicht die Definition von Typ-Kurven für das Kompaktionsverhalten von verschiedenen Tiefsee-Sedimenten. Eine erweiterte und verbesserte Form der Athy'schen Gleichung erlaubt zusammen mit Laborexperimenten, Sedimente entsprechend des Anteils an strukturell gebundenem Porenwasser zu klassifizieren. Anhand von Saugspannungsexperimenten können die Bindungskräfte zwischen Wasser und Partikeloberflächen abgeschätzt werden. Die untersuchten Sedimente reichen von »suspendierten Körnern« bis zu einem »kolloidalen System«. Die notwendigen Methoden und Gleichungen zur Bestimmung der relevanten Parameter aus Bohrlochdaten und Laborexperimenten werden diskutiert.

Abstract

Laboratory experiments, statistical analysis of field data and theoretical models are combined in the attempt to derive standard compaction curves for various deep-sea sediments which are in compaction equilibrium with the overburden. A revised and generalized version of Athy's law together with laboratory experiments allows the classification of sediments in terms of the amount of porewater structurally bound to the particles' surfaces. Especially suction pressure experiments are useful in quantifying the forces that bind water on the particle surfaces. The sediments analyzed almost range from systems of »suspended grains« to nearly perfect »colloidal systems«. The methods and equations required to derive the relevant parameters are given for both, downhole porosity/density measurements and laboratory experiments.

Résumé

A partir d'une synthèse de résultats d'expériences de laboratoires, d'analyses statistiques de données de terrain et d'une modélisation théorique, il est possible d'établir des courbes standard du processus de compaction pour divers types de sédiments de mer profonde, pour lesquels la compaction est en équilibre avec la charge. Une version revue et généralisée de la loi d'Athy permet, en accord avec les résultats expérimentaux, de classer les sédiments selon la quantité d'eau intersticielle liée structuralement à la surface des particules. Les sédiments analysés correspondent à des systèmes qui vont du type à «grains suspendus» à des colloïdes presque parfaits. Les auteurs présentent une discussion détaillée des méthodes et des équations néssaires à l'obtention des paramètres significatifs tant à partir des expériences de laboratoire qu'à partir des mesures de porosité/densité effectuées dans les forages.

Краткое содержание

Просмотр данных лабо раторных исследован ий, статистическая обработка данных изм ерений на кернах и теоретическое модел ирование уплотнения седимента при условиях равнове сия с нагрузкой разре шают охарактеризовать ти пы кривых, описывающи х поведение различных глубоково дных седиментов при п роцессах их уплотнения. Расшир енная и улучшенная форма уравнения Athy разр ешает классифициров ать седименты по доли пор овой воды, связанной с труктурно, учитывая и результат ы лабораторных иссле дований. На основании экспери ментов по напряжению при отсасывании удается оценить силы связи ме жду водой и поверхностью части чек. Гранулометричес кий состав исследованных седим ентов представлен ча стичками от суспензий до колло идальных систем. Обсу ждаются методы определения с оответствующих пара метров по данным бурения и ла бораторных исследов аний и соответствующие ма тематические уравне ния.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Athy, L. F. (1930): Density, porosity, and compaction of sedimentary rocks. - Amer. Ass. Petrol. Geol. Bull.,14, 1–24.

    Google Scholar 

  • Attewell, P. B. &Farmer, I. W. (1976): Principles of Engineering Geology. - London (Chapman & Hall).

    Google Scholar 

  • Baldwin, B. (1971): Ways of deciphering compacted sediments. - Journ. Sed. Petrol.,41, 293–301.

    Google Scholar 

  • — &Butler, C. O. (1985): Compaction curves. - Amer. Ass. Petrol. Geol. Bull69, 622–626.

    Google Scholar 

  • Bayer, U. (1978 a): Modelle instabiler Kompaktionsverläufe unter Sedimentation. - Geologische Rundschau,67, 980–990.

    Google Scholar 

  • - (1978 b): Finite computations in compaction theory. In: F. Westphal & A. Seilacher (eds.): Palökologie. - N. Jb. Geol. Palont. Abh.,164, 23–25.

  • - (1983): The influence of sediment composition on physical properties interrelationships. - In: Ludwig, W. J., Krasheninikov, V. A. et al., Init. Repts. DSDP, 71, Washington, 1111–1132.

  • — (1986): Pattern recognition problems in geology and palaeontology. - Lecture Notes in Earth Sciences, No. 2 (Springer), Berlin, 11–19.

    Google Scholar 

  • — (1987): Deskriptive Modelle zur PorositätsTiefen-Beziehung mariner Sedimente (Abstract.) - Nachr. Dt. geol. Ges.,37, 23.

    Google Scholar 

  • — (1988): Sediment compaction on large-scale systems. Abstract. - Terra cognita,8, 17–18.

    Google Scholar 

  • Beaumont, C., Keen, C. &Boutillier, R. (1982): On the evolution of rifted continental margins; comparison of models and observations for the Nova Scotian margin. - Geophys. J. R. astr. Soc.,70, 667–715.

    Google Scholar 

  • Biot, M. A. (1941): General theory of three-dimensional consolidation. - J. Appl. Phys.12, 155–164.

    Google Scholar 

  • Boyce, E. R. (1976): I. Definitions and laboratory techniques of compressional sound velocity parameters and wet-water content, wet-bulk density, and porosity parameters by gravimetric and gamma ray attenuation techniques. - In: Schlanger, S. O., Jackson, E. D. et al., Init. Repts. DSDP, 33, Washington (U. S. Govt. Printing Office), 931–958.

    Google Scholar 

  • Bryant, W. R., Bennett, R. H. &Katherman, C. F., (1981): Shear strength, consolidation, porosity, and permeability of oceanic sediments. - In: C. Emiliani (Editor), The Oceanic Lithosphere. The Sea, Vol. 7, New York (Wiley), 1555–1616.

    Google Scholar 

  • Chadwick, R. A. (1985): Permian, Mesozoic and Cenozoic structural evolution of England and Wales in relation to the principles of extension and inversion tectonics. - In: Whittaker, A. (ed.) Atlas of onshore sedimentary basins in England and Wales: Post-Carboniferous tectonics and stratigraphy. London (Blackie & Son), 9–68.

    Google Scholar 

  • Christian, J. T. (1977): Two- and Three-Dimensional Consolidation. - In: Desai, C. S. & Christian, J. T. (eds.): Numerical Methods in Geotechnical Engineering. New York (McGraw-Hill), 399–426.

    Google Scholar 

  • Dzevanshir, R. D., Buryakovskiy, L. A. &Chilingarian, G. V. (1986): Simple quantitative evaluation of porosity of argillaceous sediments at various depth of burial. - Sediment. Geol.,46, 169–175.

    Google Scholar 

  • Einsele, G. (1977): Range, velocity, and material flux of compaction flow in growing sedimentary sequences. - Sedimentology,24, 639–655.

    Google Scholar 

  • Engelhardt, W. v. (1973): Die Bildung von Sedimenten und Sedimentgesteinen. - Stuttgart (Schweizerbart).

    Google Scholar 

  • Gaillard, C. &Jautee, E. (1987): The use of burrows to detect compaction and sliding in fine-grained sediments: an example from the Cretaceous of S. E. France. - Sedimentology,34, 585–593.

    Google Scholar 

  • Geotechnical Consortium (1984): Geotechnical properties of sediments from Walvis Ridge, Deep Sea Drilling Project, Leg 75, Hole 532 A.- In: Hay, W. W., Sibuet, J. -C., et al., Init. Repts. DSDP, 75, Part 2: Washington (U. S. Govt. Printing Office), 1109–1127.

    Google Scholar 

  • Guidish, T. M. Kendall, C. G. St. C., Lerche, I., Toth, D. J. &Yarzab, R. F. (1985): Basin evaluation using burial history calculations: an overview. - Amer. Ass. Petrol. Geol. Bull.,69, 92–105.

    Google Scholar 

  • Hamilton, E. L. (1976): Variations of density and porosity with depth in deep-sea sediments. - Journ. Sed. Petrol.,46, 280–300.

    Google Scholar 

  • Hardenbol, J., Vail, P. R. &Ferrer, J. (1981): Interpretating paleoenvironments, subsidence history and sealevel changes of passive margins from seismic and biostratigraphy. - Oceanologica Acta, No. SP, 33–44.

    Google Scholar 

  • Hedberg, H. D. (1936): Gravitational compaction of clays and shales. - Amer. Journ. Sci.,31, 241–187.

    Google Scholar 

  • Hudec, P. P. (1977): Deterioration and dimensional changes on wetting of carbonate rocks as function of adsorbed water content. 2nd Int. Symposium on Water-Rock Interaction, Strasbourg, France, Proc,4, 38–45.

    Google Scholar 

  • Korvin, G. (1984): Shale compaction and statistical physics. - Geophys. J. R. astr. Soc.,78, 35–50.

    Google Scholar 

  • Lee, H. J. (1973): Measurements and estiminates of engineering and other physical properties, Leg 19. - In: Creager, J. S. Scholl, D. W. et al., Init. Repts. DSDP 19, Washington (U. S. Govt. Printing Office), 701–720.

    Google Scholar 

  • Lowe, D. R. (1976): Subaquateous liquified and fluidized sediment flows and their deposits. - Sedimentology,23, 285–308.

    Google Scholar 

  • — (1982): Sediment gravity flows: II. depositional models with special reference to the deposits of high-density turbidity currents. - Journ. Sed. Petrol.,52, 279–297.

    Google Scholar 

  • Magara, K. (1978): Compaction and Fluid Migration - Pratical Petroleum Geology. Amsterdam (Elsevier).

    Google Scholar 

  • Marine Geotechnical Consortium (1985): Geotechnical properties of northwest Pacific pelagic clays: Deep Sea Drilling Project Leg 86, Site 576 A. - In: Heath, R. C., Burckle, L. H. et al., Init. Repts. DSDP, 86, Washington (U. S. Govt. Printing Office), 723–758.

    Google Scholar 

  • Perrier, R. &Quiblier, J. (1974): Thickness changes in sedimentary layers during compaction history; methods for quantitative evaluation. - Amer. Ass. Petrol. Geol. Bull.,58, 507–520.

    Google Scholar 

  • Rieke, H. H., III. &Chilingarian, G. V. (1974): Compaction of Argillaceous Sediments. - Amsterdam (Elsevier).

    Google Scholar 

  • Schultze, E. &Muhs, H. (1967): Bodenuntersuchungen für Ingenieurbauten, 2nd ed. - Berlin, Heidelberg, New York (Springer).

    Google Scholar 

  • Terzaghi, K. (1925): Erdbaumechanik auf bodenphysikalischer Grundlage. - Seipzig (Deuticke).

    Google Scholar 

  • Weller, F. A. (1959): Compaction of sediments. - Amer. Ass. Petrol. Geol. Bull.,43, 273–310.

    Google Scholar 

  • Wetzel, A. (1984): Interrelationships between sediment composition, compaction, pore space, and shrinkage, Leg 75, Hole 532 A.- In: Hay, W. W., Sibuet, J.-C., et al., Init. Repts. DSDP, 75, Part 2: Washington (U. S. Govt. Printing Office), 1129–1136.

    Google Scholar 

  • — &Aigner, T. (1986): Stratigraphic completeness: Tiered trace fossis provide measuring stick. Geology,14, 234–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayer, U., Wetzel, A. Compactional behavior of fine-grained sediments — examples from Deep Sea Drilling Project cores. Geol Rundsch 78, 807–819 (1989). https://doi.org/10.1007/BF01829324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01829324

Keywords

Navigation