Mathematical systems theory

, Volume 7, Issue 1, pp 83–96 | Cite as

On induced transformations of Bernoulli shifts

  • Alan Saleski
Article

Keywords

Computational Mathematic Bernoulli Shift 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Abramov, The entropy of a derived automorphism,Amer. Math. Soc. Translations, Series 2, Vol. 49, pp. 162–166.Google Scholar
  2. [2]
    V. Arnold andA. Avez,Ergodic Problems of Classical Mechanics, Benjamin, New York, 1968.Google Scholar
  3. [3]
    P. Billingsley,Ergodic Theory and Information, John Wiley and Sons, New York, 1965.Google Scholar
  4. [4]
    R. V. Chacon, Change of velocity of flows,J. Math. Mech. 16 (1966), 417–431.Google Scholar
  5. [5]
    N. A. Friedman,Introduction to Ergodic Theory, Van Nostrand, Princeton, 1970.Google Scholar
  6. [6]
    N. A. Friedman andD. Ornstein, On induced transformations, Tech. Report, University of New Mexico.Google Scholar
  7. [7]
    N. A. Friedman andD. Ornstein, On isomorphism of weak Bernoulli transformations,Advances in Math. 5 (1970), 365–394.Google Scholar
  8. [8]
    S. Kakutani, Induced measure-preserving transformations,Proc. Imp. Acad. Tokyo 19 (1943), 635–641.Google Scholar
  9. [9]
    D. Ornstein, Bernoulli shifts with the same entropy are isomorphic,Advances in Math. 4 (1970), 337–352.Google Scholar
  10. [10]
    D. Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic,Advances in Math. 5 (1970), 339–348.Google Scholar
  11. [11]
    W. Parry,Entropy and Generators in Ergodic Theory, Benjamin, New York, 1969.Google Scholar
  12. [12]
    V. Rohlin, On the fundamental ideas of measure theory,Mat. Sb. 67 (1949), 107–150. [Amer. Math. Soc. Transl. No. 71 (1952).]Google Scholar
  13. [13]
    V. Rohlin, Lectures on the entropy theory of measure-preserving transformations,Russian Math. Surveys (5)22 (1967), 1–52.Google Scholar
  14. [14]
    M. Smorodinsky, An exposition of Ornstein's isomorphism theorem for Bernoulli shifts,Advances in Math. (to appear).Google Scholar
  15. [15]
    M. Smorodinsky, A Bernoulli partition which is not weakly Bernoulli,Math. Systems Theory 5 (1971), 201–203.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1973

Authors and Affiliations

  • Alan Saleski
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations