Advertisement

Finite 2-groups having invariant non-completely partitionable subgroups

  • M. M. Gol'denberg
Article
  • 22 Downloads

Abstract

A theorem is proved which classifies and describes up to generating elements and defining relations the finite 2-groups having invariant non-completely partitionable subgroups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. M. Gol'denberg and N. F. Sesekin, “Finite primary groups, p ≠ 2, with invariant noncompletely partitionable subgroups,” Matem.Zametki,9, No. 5, 551–560 (1971).Google Scholar
  2. 2.
    P. G. Kontorovich, “Decomposition of a group into a direct sum of. subgroups (II),” Matem. Sborn.,7, 27–33 (1940).Google Scholar
  3. 3.
    A. I. Starostin, “Noncompletely partitionable groups, all subgroups of which are completely partitionable,” Uch. Zap. Ural. Univ.,23, 22–28 (1959).Google Scholar
  4. 4.
    P. G. Kontorovich, A. S. Pekelis, and A. I. Starostin, “Structural aspects of group theory” Matem. Zap.Ural. Univ.,3, No. 1, 3–50 (1961).Google Scholar
  5. 5.
    F. N. Liman, “2-Groups having invariant noncyclic subgroups,” Matem. Zametki,4, No. 1, 75–84 (1968).Google Scholar
  6. 6.
    M. Hall, The Theory of Groups, Macmillan, New York (1959).Google Scholar
  7. 7.
    A. D. Ustyuzhaninov, “Finite groups having invariant noncyclic subgroups,” Matem. Zap. Ural. Univ.,6, No. 1, 107–123 (1967).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • M. M. Gol'denberg
    • 1
  1. 1.Ural State UniversityUSSR

Personalised recommendations